首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
为研究HMX含量对HTPE推进剂热安全性的影响,采用DSC、ARC和大尺寸程序控温仪开展多尺度条件下HTPE固体推进剂(HT01~HT04样品,HMX含量分别为0%、5%、10%和15%。)的热分解特性研究,获得了样品的热分解动力学参数,分析了其热解机理。DSC和ARC实验结果均显示,随着HTPE推进剂中HMX含量增加,推进剂的初始分解温度升高,热稳定性提高。ARC实验中,HT01~HT04样品修正后的绝热温升分别为819.9、1194.2、1278.9、1833.0℃,放热量分别为1639.8、2388.4、2557.9、3666.1 J/g,即随着HMX含量增加,HTPE推进剂的能量释放速率和总能量均增加。慢速烤燃试验结果显示,HT01~HT04样品的响应温度分别为119.6、120.4、122.7、122.8℃,HT01~HT03样品的响应等级均为燃烧反应,HT04样品的响应等级为爆燃反应。  相似文献   

2.
针对固体火箭发动机撞击安全性问题,采用数值分析方法,建立了某两型高能固体火箭发动机轴向与径向撞击模型,完成了不同速度、不同撞击角度下的发动机安全性分析计算,得到了在不同撞击条件下固体火箭发动机推进剂的燃烧、爆炸等反应特点。对比相同工况下的火箭撬试验结果,计算结果与实际试验接近,验证了数值模型及参数的正确性。利用已验证的模型和参数,采用相同的计算方法,通过对模型在不同速度下进行多次仿真计算,得到两型发动机的撞击临界速度。研究表明,对于高能固体推进剂固体火箭发动机,随着尺寸与装药量增大,其撞击安全性降低,在相同尺寸时,径向撞击比轴向更容易发生反应。研究结果为高能固体火箭发动机的设计及撞击安全性分析提供了参考。  相似文献   

3.
固体推进剂的枪击试验是评价固体推进剂及装药在受到枪击的情况下,是否发生燃烧、爆炸及爆轰等剧烈反应的重要试验方法。采用LS-Dyna有限元仿真软件研究了枪击试验推进剂的反应过程,并采用12.7 mm枪击试验验证了LS-Dyna的计算结果。结果表明,以点火增长模型、Johnson-Cook本构模型和Gruneisen状态方程分别赋予推进剂、子弹及推进剂壳体,计算结果表明,推进剂发生明显的燃烧反应,且推进剂燃烧在壳体内部产生的压力显著增大。采用12.7 mm枪击试验验证的试验结果表明,推进剂装药在12.7 mm子弹以约850 m/s速度撞击下,推进剂发生燃烧,此结果与模拟结果相一致。  相似文献   

4.
针对未来固体推进剂燃烧模型的发展趋势,综述了近年来国外以详细化学动力学机理为基础建立的固体推进剂燃烧模型,并介绍了相关的理论公式和数值求解方法。模型可计算的燃烧特性参数包括燃速、压强指数、燃速温度系数、物种曲线、温度曲线、表面温度和火焰温度等。目前,模型已涉及到的物质包括硝胺类(RDX,HMX,CL-20,HNF)、叠氮类(GAP,BAMO,AMMO)、硝酸酯类(NG,NC,BTTN,TMETN,DEGDN)和硝酸盐类(ADN,AN)等。模型计算结果表明,预测的燃烧特性值与实验值比较一致,证明该机理可预测先进固体推进剂的燃烧特性和指导配方设计。但目前该类模型的主要局限是凝聚相内化学反应路径和反应速率以及凝聚相初生物种的确定问题。  相似文献   

5.
为研究NEPE推进剂破片冲击响应特性,利用有限元动力学软件对NEPE推进剂受破片冲击的动力过程进行数值模拟,并进行试验验证。分析不同规格破片冲击起爆NEPE推进剂的情况,计算其临界起爆速度。结果表明,随着破片速度增加,NEPE推进剂受冲击响应情况有所不同,即破片速度在0~1121 m/s时,推进剂不发生反应; 1121~1247 m/s推进剂开始发生反应; 1247~2508 m/s推进剂响应情况由快速反应转为爆轰;破片速度大于2508 m/s时,破片直接引爆推进剂;破片质量和体积的增加都会使推进剂临界起爆速度减小,但影响程度递减;圆柱形和立方体破片冲击推进剂的临界起爆速度相近,都小于球形破片;钨合金破片和钢破片的临界起爆速度与破片质量和体积有关,但都小于铝合金破片。文中采用的破片冲击数值模拟研究方法可有效解决NEPE推进剂破片冲击特性研究的难题。  相似文献   

6.
为考察N-氧化3’3-偶氮双(6-氨基-1,2,4,5-四嗪)(DAATO_(3.5))在CMDB推进剂制备工艺中的适用性,采用无溶剂压伸工艺和於浆浇铸工艺对DAATO_(3.5)的工艺适用性进行了考察,制备了相应的CMDB推进剂样品。采用燃速试验、爆热试验、撞击感度试验、静电火花感度试验、爆发点试验、甲基紫试验、真空安定性试验等方法对含DAATO_(3.5)的CMDB推进剂的燃烧性能、能量性能、安全性能进行了系统研究。制备工艺试验表明,DAATO_(3.5)可安全的适用于无溶剂压伸工艺和於浆浇注工艺进行制备。性能测试结果表明,用DAATO_(3.5)取代原配方中的RDX(HMX),可明显提高推进剂的燃速,并保持燃速压强指数基本不变;随着配方中DAATO_(3.5)含量的增加,推进剂的爆热出现一定程度的降低;推进剂的撞击感度、静电火花感度及爆发点、甲基紫试验、真空安定性等热感度均出现一定程度的升高。  相似文献   

7.
空燃比对含硼固冲发动机补燃室燃烧影响   总被引:1,自引:0,他引:1  
进行了缩比发动机直连式试验研究,在燃气发生器试验和冲压发动机试验中对尾焰进行喷水收集残渣,研究了空燃比对含硼推进剂固体火箭冲压发动机性能的影响,并将试验结果与数值模拟结果进行对比。结果表明,研究的含硼推进剂配方具有良好的低压点火特性,并具有较高的喷射效率;冲压发动机尾焰中硼燃烧产物的直径都在5μm以下;当空燃比很高时,发动机虽能正常工作,但燃烧效率和喷管效率都很低。  相似文献   

8.
硝胺对低燃速丁羟推进剂能量与燃速的影响   总被引:5,自引:0,他引:5  
鲁国林 《固体火箭技术》2001,24(2):45-47,63
从推进剂的能量特性和燃烧性能的角度探索了硝胺(RDX、HMX)在低燃速丁羟推进剂应用的可能性,结果表明:保持固体含量和铝粉含量恒定时,在推进剂中加入一定量的硝胺部分取代AP,可以提高低燃速丁羟推进 理论比冲和显著降低推进剂的燃速压强指数,但加入RDX、HMX降低丁羟推进剂燃速的幅度非常小。  相似文献   

9.
以热粘弹理论和动力有限元法为基础,结合机械撞击载荷下固体推进剂裂纹摩擦热点细观模型,分析计算了发动机壳体和装药结构撞击变形及装药内部热点形成,确定了产生高温热点撞击临界速度。计算模型中考虑了推进剂初始弥散细观裂纹离散、裂纹扩展对推进剂宏观力学性能影响、基体粘性加热对热点形成影响等问题。通过与高能炸药Steven撞击试验结果进行对比分析,证明了理论模型及计算方法的有效性。计算了某小型发动机撞击试验临界速度。  相似文献   

10.
开展了AP含量、粒度和HMX粒度、胺类化合物、有机化合物RTA和RTJ对推进剂燃烧性能的影响研究,并对RTJ/RTA组合催化剂在推进剂中的作用机理进行了初步分析。结果表明,配方中加入RTJ/RTA组合催化剂,实现了降低4、17.5 MPa燃速的同时降低低压段、高压段压强指数,通过DSC研究表明,RTJ/RTA对AP的分解有抑制作用。通过合理调节AP/HMX的相对含量、AP粒度和HMX的粒度以及采用RTJ/RTA组合催化剂,得到了固体含量为80%的低燃速配方。  相似文献   

11.
两种含铝复合推进剂压强耦合响应的实验对比   总被引:3,自引:0,他引:3  
基于T型燃烧器双脉冲外部激励的方法,对2种含铝HTPB复合固体推进剂开展对比实验研究,分析比较其压强耦合响应特性的差异。在7 MPa条件下成功地开展了4次试验,获得了2种推进剂在T型燃烧器中的衰减常数和燃面增益常数。结果表明,由于推进剂配方中AP粒径分布存在差异,这2种推进剂的压强耦合响应常数存在差别。其中小粒径AP含量较多的推进剂更易产生不稳定燃烧现象。这一实验现象与发动机真实工作情况的表现是一致的。2种推进剂的凝相燃烧产物在发动机中的行为也表现出较大差异。  相似文献   

12.
为了解不同粒度和不同形态下CuO的催化能力,采用热重/差热联用(TG/DTA),水下声发射实验方法,研究了普通球形CuO、球形纳米级CuO、棒状纳米级CuO对A3、PBT、HMX、AP等含能材料的热分解影响,并测试了不同种类CuO对固体复合推进剂燃烧速率的影响。结果表明,CuO类催化剂均能催化A3、PBT、HMX、AP等含能材料的热分解,但催化效果和CuO的形态关系密切,和粒度关系不大;棒状纳米CuO可有效地提高推进剂的燃速;而球形纳米CuO只在低压条件下可提高推进剂的燃速,高压下反而抑制了推进剂的燃速。  相似文献   

13.
应用原位红外光谱仪研究了NEPE推进剂主要组分HMX、AP、NG及聚醚胶在升温至爆燃过程中,凝聚相红外光谱的变化。并研究了对NEPE推进剂提高燃速明显的YB2-450和降低压强指数效果较好的B2Pb两种催化剂对上述分解过程红外谱图的影响。发现B2Pb主要催化了HMX的分解,YB2-450主要催化了NG的分解,YB2-450还可在高温下加速AP的分解。这些结果为解释NEPE推进剂的燃烧特性提供了一定的试验依据。  相似文献   

14.
固体火箭发动机撞击靶板安全性数值分析   总被引:1,自引:0,他引:1  
为研究固体火箭发动机撞击安全性,建立了固体火箭发动机撞击靶板的计算模型,模型中发动机的推进剂装药采用点火增长反应速率方程.采用非线性有限元流体动力学方法,对发动机径向撞击靶板过程进行了数值模拟,分析了不同撞击速度下发动机中推进剂装药的反应情况.计算结果表明,发动机径向撞击靶板爆炸的临界速度范围为150~200 m/s;低强度多次撞击过程中推进剂会发生延迟爆轰情况.  相似文献   

15.
对于固体推进剂火箭燃烧可采用一维模型预测固体推进剂火箭发动机的侵蚀燃烧特性。用取决于不同燃烧速率的速度来表示固体推进剂的侵蚀燃烧。数值积分控制偏微分方程就可得到分析结果。使用非定常公式预测固体推进剂侵蚀燃烧特性。计算了各种不同药形的复合推进剂和双基推进剂的侵蚀燃烧特性。测出了各种不同药形装填密度(药柱初始通孔面积与喉面积之比)对压力时间曲线的影响。现有分析指出,装填密度是确定某一特定药形及化学成分的推进剂侵蚀燃烧特性的最重要参数之一。研究表明低燃速推进剂比高燃速推进剂反映出具有较大的侵蚀燃烧效应。同时也表明长方药形与圆柱药形相比具有较大的初始压力峰,相反压力很快就稳定到一般与装填密度无关的平衡压力。  相似文献   

16.
为了阐明双基推进剂基体内HMX粒子的作用,研究了HMX基复合改性双基推进剂燃速的温度敏感性。虽然单位质量推进剂中包含的能量随着HMX重量分数ξ的增加而提高。但是,当ξ<~0.5时,燃速随着ξ的增加而下降。然而,当ξ>~0.5时,燃速又随着ξ而提高。换句话说,在定压下,ξ≌0.5时,燃速为最小值。温度敏感系数随着ξ上升而单调地下降。测试结果表明,当ξ上升时,嘶嘶区的反应速率单调下降,燃烧表面的反应热单调地增加。HMX—CMDB推进剂的这种燃烧模式证明了实测的燃速和温度敏感特性。  相似文献   

17.
研究了奥克托金复合改性双基推进剂的燃烧波结构,测定了燃速与HMX含量的关系。在HMX含量低于50%时,燃速随HMX含量的增加而降低;在HMX含量高于50%时,燃速随HMX含量的增加而增大。在HMX含量低的区域内,燃速主要受气相反应速率控制,HMX的加入使暗区反应速率增大,嘶嘶区的反应速率降低,气相反馈给燃烧表面的热量减少。在HMX含量高的区域内,燃速主要受凝聚相反应速率控制,燃烧表面的反应热随着HMX含量的增加而增加。  相似文献   

18.
从对固体推进剂喷焰特征入手,论述了推进剂烟雾成因和影响推进剂信号特征的因素及降低推进剂信号特征的一般途径;结合丁羟推进剂配方特点,通过理论计算推进剂燃烧产物,分析了配方组分含量及相关因素对推进剂信号特征的影响;通过测试几种推进剂喷焰对红外、可见光及微波的衰减,分析了推进剂喷焰特性的影响因素,结合火争宽度,提出合理评价喷焰对微波衰减的标准,最后引入国外评价推进剂燃气特征信号的方法,评定所研制丁羟复合固体推进剂的雾等级为A级。  相似文献   

19.
为获得火箭顶级发动机所用推进剂的最优性能,本文就40种低燃速含铝推进剂配方的组分含量变化对其燃烧效率的影响进行了评价.所试验的推进剂由高氯酸铵、铝粉、环四甲撑四硝铵(HMX)和端羟基聚丁二烯组成.依据实验所得的铝凝聚尺寸、燃速和比冲数据可知,当燃速增加时,燃烧效率有增加的倾向;在低 L条件下,当铝凝聚尺寸减小时,比冲效率增加;铝凝聚的程度取决于口袋结构的特性,当口袋中的铝含量及铝与细 AP 质量比下降时,铝凝聚尺寸减小;口袋容积变小时,使用粗 HMX 具有减小铝凝聚尺寸的作用;HMX 的尺寸对燃速没有影响。  相似文献   

20.
通过配方组分对GAP推进剂燃烧性能影响的分析,确定了影响GAP微烟推进剂燃烧性能的主要因素,并在此基础上研究了推进剂燃烧性能的变化规律,通过选择合适的增塑剂、调整AP和HMX的相对含量及AP粒度级配,可使推进剂基础配方静态燃速在6 MPa下达到10.5~12.0 mm/s,3~10 MPa下静态压强指数可降至0.40以下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号