首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
利用丰富的月球资源制造产品和开展各项服务对人类月球探测任务至关重要。文章对NASA月球资源原位利用项目的目标、技术路线、技术成熟度和制氧技术进行了综述,并针对适用于我国的月球资源原位利用项目提出建设性意见。  相似文献   

2.
月壤原位成型技术工程适用性浅析   总被引:2,自引:0,他引:2  
月壤原位成型技术作为月球资源原位利用技术体系中的研究热点,是在月表制造建筑材料及实施月表基础设施建设的关键。文章基于国内外月壤原位成型技术发展现状,根据未来可能的月壤成型任务提出了5种月壤成型技术,分析了其各自涉及的成型体性能与任务需求的匹配性,成本及能耗约束,环境适应性以及成型工艺流程的可实现性等;梳理了形成了月壤原位成型领域的发展建议,对于后续月球资源探测和开发具有一定的借鉴和指导意义。  相似文献   

3.
月壤原位利用技术作为月球资源原位利用技术体系中的重要环节,相关技术的工程化应用是未来实施月球探测及资源开发的重要内容,也是实现自给式月球探测和开发的起点。文章基于国内外月壤原位利用技术的发展现状和趋势,给出了月壤原位利用的工程技术路线。结合近期任务工程化实施的问题和难点,简要梳理了月壤原位制氧和月壤原位成型的技术方案和发展思路,旨在为后续月球资源探测和开发提供借鉴和指导。  相似文献   

4.
于登云  葛之江  王乃东  肖林  林宗坚 《宇航学报》2012,33(12):1840-1844
月球基地建设是载人航天、深空探测技术发展的一个重要方面。根据月面环境特点和航天工程需要,对充气式结构和硬式结构的月球基地结构形式进行了分析,讨论了两种结构形式的优势和不足,并提出了基于两种结构形式的组合型月球基地的设想,为将来月球基地的建设提供参考。  相似文献   

5.
月球基地建设是未来深空探测的关键支撑环节。文章基于国内外研究成果,探讨了原位利用月球资源研制地聚合物混凝土并进行基地建造的可行性。结果显示:地聚合物混凝土所需原材料90%以上可来源于月球原位资源,且在月球环境下具有良好的耐极端环境性能;基于挤出打印和粉末打印成型工艺,地聚合物材料可满足月球环境的施工需求与环境要求。总之,利用月球原位资源有望实现基于地聚合物的月球基地原位建造设想;但该设想尚处于概念设计阶段,仍然需要相关理论支撑、系统试验研究和可行性评估。  相似文献   

6.
有人月球基地构建方案设想   总被引:2,自引:0,他引:2  
有人月球基地的建设能将人类的活动区域扩展到月球,实现月球资源的深度开发和利用,服务于人类社会发展。中国开展月球基地建设,在技术上是空间站工程和载人登月工程的有效结合,也有利于其载人航天工程的可持续发展。文章针对有人月球基地的构建,将有人月球基地构建的基本途径分为刚性舱组装、柔性舱组装和月面建筑式三大类,并指出在月球基地发展的不同阶段构建途径的选择原则,再结合中国国情,提出了中国在有人月球基地发展初期的构建方案,最后对有人月球基地构建中的一些关键问题进行了分析总结。  相似文献   

7.
有人月球基地构型及构建过程的设想   总被引:1,自引:0,他引:1  
《航天器工程》2015,(5):23-30
与传统航天器设计不同,有人月球基地涉及构型与构建、能源、月面移动、资源利用等诸多方面。文章在对国外有人月球基地不同构型对比分析的基础上,提出了我国有人月球基地方案设想,包括刚性舱构型、刚性+柔性舱构型、建造式构型和综合式有人月球基地方案,并进一步提出了有人月球基地构建过程设想,可为我国未来有人月球基地建设提供参考。  相似文献   

8.
《空间电子技术》2012,(1):67-67
据国务院新闻办公室于2011年12月29日发表的《2011年中国的航天》白皮书指出,未来五年我国将开展载人登月前期方案论证。我国将按照"绕、落、回"三步走的发展思路,继续推进月球探测工程建设,发射月球软着陆和月面巡视探测器,完成月球探测第二步任务。启动实施以月面采样返回为目标的月球探测第三步任务。白皮书还指出,"十二五"期间,我国将增强现役运载火箭的可靠性和发射适应性,发展新一代  相似文献   

9.
文章针对未来有人参与的月球探测任务,首先开展了月球表面环境地面模拟试验验证需求分析,归纳总结了国内外技术发展现状。然后,提出并分析了载人月球探测地面模拟试验需重点研究的关键技术:真空热环境下月面移动式多体低重力模拟技术;复杂月面环境高精度热流模拟技术;大容量布尘条件下超高真空获得与保持技术;月面辐射与月尘环境模拟技术;月尘防护效能量化评估技术;月面综合环境试验验证技术等。最后,给出了面向载人月球探测的月面环境模拟试验技术研究总体方案,并对月面环境模拟试验技术的发展目标进行了展望。  相似文献   

10.
《航天器工程》2016,(6):116-121
在月基对地观测优势和我国现有工程任务能力分析基础上,提出了我国月基对地观测的月球基地选址技术流程、选址原则及评价标准。在科学目标和工程任务能力约束下,对影响选址的主要因素,包括月面地形地貌、观测时间、通信能力、能源需求、月球温度环境、兼顾天文观测多重观测体系因素等进行分析,为我国未来月球基地选址提供参考依据。  相似文献   

11.
A recent study made by ESA has reviewed the scientific investigations to be only, or best, performed on the Moon (Return to the Moon, ESA SP-1150, June 1992), and has identified the need for a manned lunar outpost to provide support to field geologists in sampling and in-situ observations of the lunar surface, and to allow the refurbishments of surface stations and rovers. Planning and development for a manned outpost on the Moon requires an in-depth understanding and analysis of the functions this outpost is expected to perform. We therefore analyzed the impact of the proposed scientific investigations on the design of a manned lunar outpost. The specific questions raised in our study were: What are the medical, physiological and psychological risks for a crew to stay and to work on the Moon? What transit and lunar surface infrastructures (habitats and vehicles) are needed to minimize those risks?  相似文献   

12.
Scientific investigations to be carried out at a lunar base can have significant impact on the location, extent, and complexity of lunar surface facilities. Among the potential research activities to be carried out are: (1) Lunar Science: Studies of the origin and history of the Moon and early solar system, based on lunar field investigations, operation of networks of seismic and other instruments, and collection and analysis of materials; (2) Space Plasma Physics: Studies of the time variation of the charged particles of the solar wind, solar flares and cosmic rays that impact the Moon as it moves in and out of the magnetotail of the Earth; (3) Astronomy: Utilizing the lunar environment and stability of the surface to emplace arrays of astronomical instruments across the electromagnetic spectrum to improve spectral and spatial resolution by several orders of magnitude beyond the Hubble Space Telescope and other space observatories; (4) Fundamental physics and chemistry: Research that takes advantage of the lunar environment, such as high vacuum, low magnetic field, and thermal properties to carry out new investigations in chemistry and physics. This includes material sciences and applications; (5) Life Sciences: Experiments, such as those that require extreme isolation, highly sterile conditions, or very low natural background of organic materials may be possible; and (6) Lunar environmental science: Because many of the experiments proposed for the lunar surface depend on the special environment of the Moon, it will be necessary to understand the mechanisms that are active and which determine the major aspects of that environment, particularly the maintenance of high-vacuum conditions. From a large range of experiments, investigations and facilities that have been suggested, three specific classes of investigations are described in greater detail to show how site selection and base complexity may be affected: (1) Extended geological investigation of a complex region up to 250 kilometers from the base requires long range mobility, with transportable life support systems and laboratory facilities for the analysis of rocks and soil. Selection of an optimum base site would depend heavily on an evaluation of the degree to which science objectives could be met. These objectives could include lunar cratering, volcanism, resource surveys or other investigations; (2) An astronomical observatory initially instrumented with a VLF radio telescope, but later expanding to include other instruments, requires site preparation capability, "line shack" life support systems, instrument maintenance and storage facilities, and sortie mode transportation. A site perpetually shielded from Earth is optimum for the advanced stages of a lunar observatory; (3) an experimental physics laboratory conducting studies requiring high vacuum facilities and heavily instrumented experiments, is not highly dependent on lunar location, but will require much more flexibility in experiment operation and EVA capability, and more sophisticated instrument maintenance and fabrication facilities.  相似文献   

13.
月壤3D打印可以实现月球的原位资源利用,有望成为月球基地建设和持久运营维护的关键技术手段。文章综述了模拟月壤激光3D打印方法的研究现状,搭建了以CUG-1A模拟月壤为原料的激光熔融成型原理试验系统,并开展了常规环境工艺参数的初步试验。结果显示:激光功率和扫描速度影响激光熔融深度和直径,是模拟月壤激光熔融成型的关键工艺参数;模拟月壤熔融成型过程易出现孔洞、球化等典型缺陷,需要进一步对月壤激光相变机理和上述成型工艺参数进行解析优化。  相似文献   

14.
3D-printing technologies are receiving an always increasing attention in architecture, due to their potential use for direct construction of buildings and other complex structures, also of considerable dimensions, with virtually any shape. Some of these technologies rely on an agglomeration process of inert materials, e.g. sand, through a special binding liquid and this capability is of interest for the space community for its potential application to space exploration. In fact, it opens the possibility for exploiting in-situ resources for the construction of buildings in harsh spatial environments. The paper presents the results of a study aimed at assessing the concept of 3D printing technology for building habitats on the Moon using lunar soil, also called regolith. A particular patented 3D-printing technology – D-shape – has been applied, which is, among the existing rapid prototyping systems, the closest to achieving full scale construction of buildings and the physical and chemical characteristics of lunar regolith and terrestrial regolith simulants have been assessed with respect to the working principles of such technology. A novel lunar regolith simulant has also been developed, which almost exactly reproduces the characteristics of the JSC-1A simulant produced in the US. Moreover, tests in air and in vacuum have been performed to demonstrate the occurrence of the reticulation reaction with the regolith simulant. The vacuum tests also showed that evaporation or freezing of the binding liquid can be prevented through a proper injection method. The general requirements of a Moon outpost have been specified, and a preliminary design of the habitat has been developed. Based on such design, a section of the outpost wall has been selected and manufactured at full scale using the D-shape printer and regolith simulant. Test pieces have also been manufactured and their mechanical properties have been assessed.  相似文献   

15.
SinterHab     
This project describes a design study for a core module on a Lunar South Pole outpost, constructed by 3D printing technology with the use of in-situ resources and equipped with a bio-regenerative life support system. The module would be a hybrid of deployable (CLASS II) and in-situ built (CLASS III) structures. It would combine deployable membrane structures and pre-integrated rigid elements with a sintered regolith shell for enhanced radiation and micrometeorite shielding. The closed loop ecological system would support a sustainable presence on the Moon with particular focus on research activities. The core module accommodates from four to eight people, and provides laboratories as a test bed for development of new lunar technologies directly in the environment where they will be used. SinterHab also includes an experimental garden for development of new bio-regenerative life support system elements. The project explores these various concepts from an architectural point-of-view particularly, as they constitute the building, construction and interior elements. The construction method for SinterHab is based on 3D printing by sintering of the lunar regolith. Sinterator robotics 3D printing technology proposed by NASA JPL enables construction of future generations of large lunar settlements with little imported material and the use of solar energy. The regolith is processed, placed and sintered by the Sinterator robotics system which combines the NASA ATHLETE and the Chariot remotely controlled rovers. Microwave sintering creates a rigid structure in the form of walls, vaults and other architectural elements. The interior is coated with a layer of inflatable membranes inspired by the TransHab project. The life-support system is mainly bio-regenerative and several parts of the system are intrinsically multifunctional and serve more than one purpose. The plants for food production are also an efficient part of atmosphere revitalization and water treatment. Moreover, the plants will be used as a “winter garden” for psychological and recreational purposes. The water in the revitalization system has a multifunctional use, as radiation shielding in the safe-haven habitat core. The garden module creates an artificial outdoor environment mitigating the notion of confinement on the lunar surface. Fiber optics systems and plasma lamps are used for transmission of natural and artificial light into the interior.  相似文献   

16.
《Acta Astronautica》2009,64(11-12):1337-1342
With the vast experience gained by Aerospace Community in the last five decades, the natural future course of action will be to expand Space Exploration. Our understanding of Moon is relatively better with a number of unmanned satellite missions carried out by the leading Space Agencies and manned missions to Moon by USA. Also a number of unmanned satellite missions and surface rover missions were carried out to Mars by those Space agencies generating many new details about Mars. While the future exploration efforts by global community will also be centered obviously on Moon and Mars, it is noteworthy that already NASA had declared its plans for establishing a Surface Base on Moon and developing the technical infrastructure required. Surface Bases on Moon and Mars give rise to a number of strategic, technical and ethical issues both in the process of development, and in the process of establishing the bases. The strategic issues related to Moon and Mars Surface Bases will be centered around development of enabling technologies, cost of the missions, and international cooperation. The obvious path for tackling both the technological development and cost issues will be through innovative and new means of international cooperation. International cooperation can take many forms like—all capable players joining a leader, or sharing of tasks at system level, or all players having their independent programmes with agreed common interfaces of the items being taken to and left on the surface of Moon/Mars. Each model has its own unique features. Among the technical issues, the first one is that of the Mission Objectives—why Surface Bases have to be developed and what will be the activity of crew on Surface Bases? Surface Bases have to meet mainly the issues on long term survivability of humans on the Mars/Moon with their specific atmosphere, gravity and surface characteristics. Moon offers excellent advantages for astronomy while posing difficulties with respect to solar power utilization and extreme temperature variations. Hence the technical challenges depend on a number of factors starting from mission requirements. Obviously the most important technical challenge to be addressed will be in the areas of crew safety, crew survivability, adequate provision to overcome contingencies, and in-situ resource utilization. Towards this, new innovations will be developed in areas such as specialized space suits, rovers, power and communication systems, and ascent and descent modules. The biggest ethical issue is whether humankind from Earth is targeting ‘habitation’ or ‘colonization’ of Moon/Mars. The next question will be whether the in-situ resource exploitation will be only for carrying out further missions to other planets from Moon/Mars or for utilization on Earth. The third ethical issue will be the long term impact of pollution on Moon/Mars due to technologies employed for power generation and other logistics on Surfaces. The paper elaborates the views of the authors on the strategic, technical and ethical aspects of establishing Surface Bases and colonies on Moon and Mars. The underlying assumptions and gray areas under each aspect will be explained with the resulting long-term implications.  相似文献   

17.
With the vast experience gained by Aerospace Community in the last five decades, the natural future course of action will be to expand Space Exploration. Our understanding of Moon is relatively better with a number of unmanned satellite missions carried out by the leading Space Agencies and manned missions to Moon by USA. Also a number of unmanned satellite missions and surface rover missions were carried out to Mars by those Space agencies generating many new details about Mars. While the future exploration efforts by global community will also be centered obviously on Moon and Mars, it is noteworthy that already NASA had declared its plans for establishing a Surface Base on Moon and developing the technical infrastructure required. Surface Bases on Moon and Mars give rise to a number of strategic, technical and ethical issues both in the process of development, and in the process of establishing the bases. The strategic issues related to Moon and Mars Surface Bases will be centered around development of enabling technologies, cost of the missions, and international cooperation. The obvious path for tackling both the technological development and cost issues will be through innovative and new means of international cooperation. International cooperation can take many forms like—all capable players joining a leader, or sharing of tasks at system level, or all players having their independent programmes with agreed common interfaces of the items being taken to and left on the surface of Moon/Mars. Each model has its own unique features. Among the technical issues, the first one is that of the Mission Objectives—why Surface Bases have to be developed and what will be the activity of crew on Surface Bases? Surface Bases have to meet mainly the issues on long term survivability of humans on the Mars/Moon with their specific atmosphere, gravity and surface characteristics. Moon offers excellent advantages for astronomy while posing difficulties with respect to solar power utilization and extreme temperature variations. Hence the technical challenges depend on a number of factors starting from mission requirements. Obviously the most important technical challenge to be addressed will be in the areas of crew safety, crew survivability, adequate provision to overcome contingencies, and in-situ resource utilization. Towards this, new innovations will be developed in areas such as specialized space suits, rovers, power and communication systems, and ascent and descent modules. The biggest ethical issue is whether humankind from Earth is targeting ‘habitation’ or ‘colonization’ of Moon/Mars. The next question will be whether the in-situ resource exploitation will be only for carrying out further missions to other planets from Moon/Mars or for utilization on Earth. The third ethical issue will be the long term impact of pollution on Moon/Mars due to technologies employed for power generation and other logistics on Surfaces. The paper elaborates the views of the authors on the strategic, technical and ethical aspects of establishing Surface Bases and colonies on Moon and Mars. The underlying assumptions and gray areas under each aspect will be explained with the resulting long-term implications.  相似文献   

18.
《Acta Astronautica》2001,48(5-12):711-721
Early human missions to the Moon have landed on six different sites on the lunar surface. These have all been in the low-latitude regions of the near side of the Moon. Early missions were designed primarily to assure crew safety rather than for scientific value. While the later missions added increasingly more challenging science, they remained restricted to near-side, low-latitude sites. Since the 1970s, we have learned considerably more about lunar planetology and resources. A return within the next five to ten years can greatly stimulate future human space exploration activities. We can learn much more about the distribution of lunar resources, especially about hydrogen, hydrated minerals, and water ice because they appear to be abundant near the lunar poles. The presence of hydrogen opens the possibility of industrial use of lunar resources to provide fuel for space transportation throughout the solar system.This paper discusses the rationale for near-term return of human crews to the Moon, and the advantages to be gained by selecting the Moon as the next target for human missions beyond low-Earth orbit. It describes a systems architecture for early missions, including transportation and habitation aspects. Specifically, we describe a primary transportation architecture that emphasizes existing Earth-to-orbit transportation systems, using expendable launch vehicles for cargo delivery and the Space Shuttle and its derivatives for human transportation. Transfer nodes should be located at the International Space Station (ISS) and at the Earth-Moon L1 (libration point).Each of the major systems is described, and the requisite technology readiness is assessed. These systems include Earth-to-orbit transportation, lunar transfer, lunar descent and landing, surface habitation and mobility, and return to Earth. With optimum reliance on currently existing space systems and a technology readiness assessment, we estimate the minimum development time required and perform order-of-magnitude cost estimates of a near-term human lunar mission.  相似文献   

19.
"嫦娥三号"是我国首个成功实施地外天体表面就位探测的航天器,在其研制过程中充分考虑了月面环境对探测器的影响,开展了针对性设计及地面验证工作。文章综述了探测器针对月尘环境方面的设计因素,总结了月面月尘激扬的因素及其相关数值分析工作,对月尘验证试验的设计及条件制定进行了说明。相关结果或工作思路可为后续月面探测器及火星表面探测器的研制提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号