首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
一种新颖的微空心阴极放电等离子体推力器   总被引:1,自引:0,他引:1  
微小卫星的发展和成功应用迫切需要新型微推力器的研制。微放电技术是等离子体放电中重要的一类,近几十年来成为各国的研究热点。其中,微空心阴极放电(MHCD)是一种新颖的非平衡高气压辉光放电,其优点是可以在高气压下稳定放电,并且只需要非常低的电压(几百伏特)或者输入功率(百毫瓦数量级)。MHCD建立在2个几百微米厚度的金属平面电极上,材料可以是钼、铝等,由电介质(云母或氧化铝)隔开。"三明治"的布局结构上从一个电极到另一个电极钻有直径为几十微米到几百微米的孔,气体压强可以很高,甚至超过大气压。微空心阴极放电较小的尺寸结构与强烈并可控的气体加热相结合,可以开发应用在新型的电热式微等离子体推进上。由于微空心阴极放电等离子体推力器在微放电等离子体中加热了工质气体,随后通过微喷管喷出产生推力,因此与传统的冷气微推力器相比,可大大提高推力器的比冲和推力。  相似文献   

2.
微型电推进技术具备体积小、质量轻、功耗低、比冲高等特点,是微纳卫星最合适的动力技术。结合微纳卫星对微型电推进系统的技术需求,综述了微型离子推力器、低功率霍尔推力器、场致发射电推力器、离子液体电喷雾推力器、真空电弧推力器、脉冲等离子体推力器等六种典型微型电推力器的工作机理、性能参数范围及研究和应用现状,分析了气体工质电离、液体工质电喷雾、固体工质烧蚀等三种电离机制的微型电推力器的技术特点。结果表明:气体电离模式技术较成熟、寿命长,缺点是系统相对复杂、低功率工作时效率大幅下降,故建议应用于微卫星动力系统;液体电喷雾模式结构简单,效率高,微纳卫星均可应用,但性能一致性和长寿命工作特性需要进一步考核验证;固体烧蚀模式结构最简单,微纳卫星均可应用,缺点是效率低。研究结果可为微纳卫星推进系统方案的优选提供参考。  相似文献   

3.
磁等离子体动力推力器具有高比冲、大推力的特点,是一种非常有前途的空间电推进形式。为进一步提高推力器的性能,需要进行强磁场下的推力器加速机理研究。与传统小功率电推力器相比,磁等离子体动力推力器功率大,推进剂流量大,导致实验研究难度大,成本高,存在一定的危险性。利用等离子体电导率模型和磁流体方程组,对强磁环境下推力器进行建模,在0.2、0.53、0.66、1.54 T不同磁场强度下进行了仿真。结果表明,推力器比冲和电压随着磁场强度的提高而增加,比冲变化范围3400~4650 s,电压变化范围120~236 V,推力器效率先增加、后减小,从60.8%增加到72.6%,最后减小到57.9%。研究结果表明,磁流体模型和电导率模型能够反映出磁场对等离子体的加速作用,磁场强度会影响比冲和效率。该模型可为以后推力器的设计和优化提供参考。  相似文献   

4.
50 kW级高功率霍尔推力器放电通道数值模拟研究   总被引:2,自引:0,他引:2       下载免费PDF全文
高功率霍尔推力器兼顾了比冲高、推力大、寿命长等特点。为了提高设计效率并考察热负荷问题,以50 kW级霍尔推力器为对象,采用单元粒子法(PIC)/蒙特卡罗碰撞模型(MCC)/直接模拟蒙特卡罗碰撞模型(DSMC)混合算法,建立二维对称计算模型。基于准电中性假设、中性原子考虑为背景气体,计算得到标准工况下(功率50 kW,流量86.4 mg/s)推力为2.2 N,比冲为2 598 s,与同类推力器实验结果对比,误差分别为5.18%和3.35%。在此基础上,考察了多种工况下(工作电压400~600 V,工质流量69.12~103.68 mg/s)放电通道内离子数密度、离子轴向运动速度、电子温度分布等参数。结果表明:增大工作电压会增强粒子间相互作用及离子加速喷出效果,流量调节影响电子温度和离子数密度分布;从推力器性能方面来看,增大工作电压,推力比冲随之增大,流量增大、推力增大,推力器的热损失功率占比达到15.94%。研究结果为高功率霍尔推力器的设计和实验提供了一定的参考依据。  相似文献   

5.
为了实现小推力固体火箭发动机的长时间工作,对4种采用复合推进剂端燃药柱的发动机进行设计和试车.工作时间分别达到75、105、145、235 s.试验结果表明,该发动机设计方案合理,采用这种C/C喉衬的复合结构喷管实现长时间工作是完全可行的.其中,75 S发动机的地面比冲为2 217 N·s/kg;145 s发动机的地面比冲为2 236 N·a/kg;235 s发动机的地面比冲为2 147 N·s/kg,性能测试结果基本满足发动机总体指标要求.此外,在试验过程中,还获得了C/C喉衬的烧蚀和绝热层的烧蚀炭化规律,为后续开展长时间工作固体火箭发动机研究提供了重要参考.  相似文献   

6.
为了研究单路电磁阀打开对采用自燃推进剂的双组元空间液体火箭发动机脉冲工作特性的影响,对150 N发动机开展高空模拟热试车。采用推进剂组合为四氧化二氮和甲基肼,考察了氧化剂路、燃料路电磁阀同时打开和分别单独打开时20、30、50、80 ms脉宽下的发动机脉冲工作特性,脉冲控制周期均为160 ms。试验结果表明:(1)仅氧阀打开时,20、30 ms脉宽下的发动机平均推力冲量分别为0.35、0.41 N·s,分别为对应正常工况的11.08%、9.51%;50、80 ms脉宽下平均推力冲量分别为0.47、0.63 N·s,分别为对应正常工况的6.20%、5.33%,四氧化二氮均发生了充分的闪蒸雾化。(2)仅燃阀打开时,20、30 ms脉宽下的发动机平均推力冲量值相当,分别为0.17、0.18 N·s,分别为对应正常工况的5.38%、4.18%,甲基肼主要呈液态从喷管出口边缘流出;当脉宽增大至50、80 ms时,甲基肼发生不完全的闪蒸,发动机平均推力冲量随脉宽增大而逐渐增大,分别为0.22、0.31 N·s,分别为对应正常工况的2.90%、2.62%。单阀打开时,发动机脉冲工作产生的推力冲量主要与推进剂的闪蒸雾化程度有关。  相似文献   

7.
附加磁场强度与位形是大功率磁等离子体动力推力器(Applied Field Magnetoplasmadynamic Thruster, AF-MPDT)重要工作参数之一。为验证附加磁场强度对低工况下AF-MPDT性能的影响,采用北京控制工程研究所联合北京航空航天大学研制的100 kW级AF-MPDT原理样机,利用推力靶测量系统进行高温震动环境下的推力测量,针对不同附加磁场强度(30~230 mT)下的推力器开展中低功率性能研究实验。实验结果表明,在一定范围内,增加磁场强度可提升低工况下推力器推力、比冲、放电电压及效率等性能指标,并且放电电流越大,性能提升效果越明显。分析表明,低工况下AF-MPDT推力、比冲与磁场强度的平方根呈线性关系;推力器放电电压与磁场强度呈线性关系;推力器效率随磁场强度增强而增加,最终达到相应工况下的极限。  相似文献   

8.
射频离子推力器是空间电推进的一种,其推力性能是系统设计的核心问题。为获得推力特性随设计参数的变化规律,采用数值计算方法进行了研究,开展了1 mN射频离子推力器设计计算,对不同放电室尺寸、流量、射频功率、屏栅电压下的推力性能进行了分析并进行了工况优化。结果表明,模型能够正确地描述射频离子推力器性能变化规律,放电室内径25 mm的推力器即可以实现1 mN推力指标,在最优工况下,推力器推力1.176 mN,比冲2 503 s,效率53.13%,满足设计要求。根据该模型研制的推力器样机成功点火,验证了数值模型的有效性,可以利用该模型为射频离子推力器研制工作提供指导。  相似文献   

9.
低功率水电弧加热发动机的初步研究   总被引:1,自引:0,他引:1  
本文研究了以水为推进剂的电弧加热发动机。其中电弧加热发动机的流量为15mg/s、电流为8A,此时平均电压为80.5V、功率约为640W、平均推力为0.0975N,以此计算得到比冲为650s左右、效率为55%~60%。成功地验证了水做为电弧加热发动机的推进剂、产生推力的能力。  相似文献   

10.
自由分子流微电热推力器数值模拟计算   总被引:1,自引:1,他引:0  
基于微机电系统技术的自由分子流微电热推力器(FMMR)是一种微型电热推力器,它具有集成化程度高、体积小、质量轻、响应速度快、推质比高、可靠性高和易于集成为推进阵列等特点,它在军事和民用微/纳航天器方面有广阔的应用前景。通过建立合理的数学模型,如分子与壁面相互作用模型采用CLL模型,分子模型采用变径硬球模型,分子碰撞对的选取采用取舍方法。采用直接模拟蒙特卡罗方法结合信息保存法对FMMR的流动特性进行了数值模拟计算和性能计算,并对影响推力器性能的各种因素进行分析。计算和分析结果表明,当采用氩气和水作为推进剂工质,薄膜电阻温度为600K,工作滞止压强为500Pa时,FMMR推进单元的比冲分别为47.900s(1s=9.8N·s/kg)和68.163s,推力为0.158mN,效率为25.8%。通过优化设计、系统集成等可以进一步提高推力器的比冲、推力和效率。  相似文献   

11.
为研究使用含硼推进剂的微推进器点火燃烧特性及推进性能,搭建了激光点火测试实验台,配制了B/AP、B/KNO_3及B/AP/HTPB三种含硼推进剂配方,分别在2~6 mm不同内径微燃烧室中进行了燃烧测试实验。实验结果表明,配方B/KNO_3的燃速快,推力大,在内径为2.76 mm燃烧室中的平均推力达到0.028 56 N;配方B/AP的推力作用时间长,冲量大,在内径为4.92 mm燃烧室中的最大冲量为0.042 28 N·s;配方B/AP/HTPB燃烧较稳定,粘合剂的添加可改善燃烧特性,但会降低推进性能,且推力、比推力、冲量、比冲量等推进性能均随燃烧室内径的增大呈先增大、后减小的趋势。  相似文献   

12.
激光烧蚀微推力器技术是激光推进技术最有可能率先实现工程应用的技术研究方向。作为一种新型的空间推进领域电推进推力器技术,以其系统集成度较高、电功耗较低、冲量元精准等优势特性,在推进性能和系统集成等方面形成鲜明的特色,对于多种空间推进任务具备潜在的应用价值。以激光烧蚀微推力器发展历程为背景,总结提炼当前推力器技术发展趋势,提出了激光烧蚀微推力器目前最具研究价值的两种工作模式,分别对高低比冲两种不同工作模式进行了性能分析和比对,对激光烧蚀微推力器应用前景进行了展望,最后给出了进一步研究的建议。  相似文献   

13.
微空心阴极放电机理及其在电热式推力器中的应用   总被引:1,自引:0,他引:1  
近年来,微空心阴极放电(MHCD)技术的发展为研制适用于小卫星的先进新型微推力 器提供了可能。MHCD是微放电领域中一种新颖的非平衡高气压辉光放电,其优点是可以在高 气压下稳定放电,并且只需要非常低的电压(几百伏特)或者输入功率(百毫瓦数量级)。 本文针对MHCD,实验研究了微放电的电流-电压特性,并利用光学发射光谱的方法测量了微 等离子体中电子数密度和中性气体温度。结果表明,在稳定的辉光放电下,MHCD孔内的电子 数密度和中性气体温度随着压强和放电电流的增加而增大,电子数密度可达
10 14 cm -3 ,中性气体温度可达1000K。由此可以推断,微空心阴极放电较小 的尺寸结构与强烈并可控的气体加热相结合,完全可以开发应用在新型的电热式等离子体推 进上,研制成微空心阴极放电等离子体推力器。由于在微放电等离子体中加热了工质气体, 因此其性能可大大高于冷气推进。  相似文献   

14.
基于强磁场线圈的一种新型100 k W级水冷附加场磁等离子体动力推进系统MAT-100S(100 k W applied-field magnetoplasmadynamic thruster system)由强磁线圈、空心阴极、扩张型阳极、水冷系统、电源处理单元。推进剂供给系统,热控子系统等组成。目前,整个系统还处于研究之中,各个模块在进行研制和试验。已进行了在强磁环境下等离子体动力推力器的试验研究,对推力器的性能进行了初步测试。在磁场强度0.4 T下,MAT-100S达到1.35 N(34 m N/k W)推力、比冲4200 s、效率70%。试验结果表明,强磁环境下,MAT-100S推力上有明显提升,羽流特性也有显著改善。说明在强磁场下可有效提高推力器的稳定性和性能。通过和小功率电推进和化学推进在实际任务中进行对比,推进剂消耗只有化学推进的1/10,传统电推进的1/2。在完成任务时间方面,消耗的时间只有传统电推进的1/3。采用强磁场磁等离子体动力推进系统能够更好地完成轨道转移和深空探测等任务,是一种非常有发展潜力的推进系统。  相似文献   

15.
磁等离子体动力推力器具有比冲高、推力密度大的特点,被认为是未来大功率空间任务最有潜力的推进方案之一。作为电磁推进装置的一种,磁等离子体动力推力器的性能与磁场密切相关。文章从磁场来源的角度讨论了磁等离子体动力推力器的发展历程,分别介绍了自身场磁等离子体动力推力器和附加场磁等离子体动力推力器的工作原理以及几款典型的推力器原理样机的结构和特点。此外,分析了推力器综合效率与磁场产生效率之间的关系,针对磁等离子体动力推力器的工程应用中的一些关键技术进行了探讨,具体包括大功率空间能源系统、推力器寿命、推力器小型化和轻质化等方面,并列举了国内外研究机构在这些方面做出的部分研究工作。最后对磁等离子体动力推力器的未来发展方向进行了展望。  相似文献   

16.
脉冲等离子体推力器的设计评估仿真   总被引:1,自引:0,他引:1  
运用磁流体动力学(Magnetohydrodynamic,MHD)的方法,对脉冲等离子体推力器推力室工作过程开展三维双温MHD数值仿真,并对推力室的工作机理进行了分析研究。通过该模型计算得到的推进剂烧蚀质量和原冲量与实验结果相符,同时对不同初始电压、电容、电极长度及推进剂高宽比下的情况进行了评估,为推力器设计提供指导依据。结果显示,高放电能量、长电极长度及大高宽比对推力器的性能都有一定提升,但这种提升是有限的,在进行推力器设计时,这些因素应进行综合考虑。  相似文献   

17.
自由分子流微电热推力器工作特性和性能研究   总被引:3,自引:1,他引:2  
微推进地面试验系统由推进剂贮存供应控制单元、电源供应控制单元、虚拟仪器测控单元和推力器等组成。通过FMMFL的设计加工和地面试验系统建设,在大气状态下,对FMMR的工作特性和性能进行研究,并与理论分析和数值模拟计算结果进行了对比分析。研究结果表明,在大气状态下,基于MEMS的薄膜温度传感器和薄膜加热器工作稳定;当输入功率为14.6W,工作压强为100Pa时,推力器工作温度为600K。推进剂工质为N2时,质量流量为3.720mg/s,比冲为54.254s,推力为1.979mN;推进剂工质为H2O时,质量流量为2.976mg/s,比冲为68.163s,推力为2.000mN。FMMR的各项性能参数与理论分析结果一致。通过优化设计和系统集成,FMMR的性能将得到进一步提高。  相似文献   

18.
场发射电推力器的研究现状及其关键技术   总被引:2,自引:0,他引:2  
与传统的化学推进相比,电推进具有高比冲、小推力、长寿命等特点,能够大幅节省推进剂、增加有效载荷质量,从而增加航天器在轨寿命,提高航天器的整体性能与收益,特别适合用于航天器的姿态控制、轨道转移和深空探测等任务。场发射电推力器是一种具有比冲高、推力冲量分辨率高、推力噪声低、功耗及成本低、结构紧凑等优点的电推力器,是重力梯度卫星的高精度阻力补偿、微纳卫星的姿态控制和轨道转移、星座编队飞行等任务最有前景的推进技术之一。简述了场发射电推力器的工作原理、结构和特点,重点分析了国内外场发射电推力器的研究现状以及关键技术。  相似文献   

19.
田雷超  李林  杭观荣  康小录 《宇航学报》2019,40(12):1485-1491
为了研究影响环形微阴极电弧推力器寿命的因素,首先分析了可能的因素,接着通过试验研究了电流参数对阴阳极间电阻的影响,不同功率下的推力器热性能以及功率大小对绝缘体腐蚀的影响。试验结果表明,为了延长推力器的寿命,需要控制推力器较大的放电电流,使得阴阳极间电阻动态平衡,维持在0.5~10 kΩ;需要选择合适的放电功率,功率阈值应考虑各部件材料的高温承受能力;另外,绝缘体的腐蚀是制约推力器寿命的主要因素,降低放电功率有助于减缓该腐蚀。  相似文献   

20.
实验以含能聚合物聚叠氮缩水甘油醚(Glycidyl azide polymer,GAP)作为激光烧蚀微推力器的靶材。通过对不同浓度纳米碳粉掺杂和靶材厚度下激光烧蚀GAP的比冲、冲量耦合系数和能量转化效率测量,结合靶材喷射羽流图像,分析了纳米碳粉掺杂提高激光烧蚀聚合物靶材推进性能的机理,给出纳米碳粉掺杂的适用方式。实验结果表明:透射式下,掺杂纳米碳粉之后,聚合物对激光的吸收大幅增强,但激光烧蚀推进性能不随掺杂浓度增加而显著提升;纳米碳粉吸收激光能量形成温度极高的局部热区促进聚合物中化学能的释放,是推进性能提升的主要原因;掺杂纳米碳粉之后的GAP烧蚀深度降低,表现出面吸收特性;随着靶材厚度的增加,未完全烧蚀的工质质量增加,使得靶材的利用率大大降低,导致聚合物推进性能下降。实验中掺杂3%纳米碳粉、厚度为54 μm的GAP靶材最优能量转化效率超过250%,适合作为透射式激光烧蚀微推力器的靶材。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号