首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Tulunay  Y.  Stanisławska  I.  Rothkaehl  H. 《Cosmic Research》2003,41(4):319-331
Muldrew [1] was the pioneer who reported the midlatitude electron density trough at the topside ionosphere. For about ten to fifteen years the trough, its morphology, dynamical behavior, relationship to the equatorial plasmapause, and physical and chemical processes which lead to the trough formation had been extensively investigated. Then, the work on the trough had been slowed down gradually. As the new space systems have become more vulnerable to space weather effects, a need for robust programs and a long track record in space environment sensing and modeling to produce new space environment models and products that would meet high-priority defense and commercial needs arises naturally. In this context, it is intended to go over the reported trough work dating back to the 1970s and some typical findings of later developments briefly. Most of the aspects of the trough studies have been repeated with new data for newer physical models. From this point of view, the Ariel 3 and Ariel 4 satellite trough results are chosen since the work on the Ariel trough had been very original and very extensive quantitatively and qualitatively in the 1970s. The results reviewed here are based on more than 1000 beautiful selected trough cases. Due to the good quality and quantity of the Ariel satellite data, equal coverage in space and time were maintained, which makes the trough results very important. This paper will end with some reference to the trough models, results that establish a link between the topside and the F2 region of the ionosphere. As one typical application, HF radiocommunication is chosen to be the point of interest. In practical applications of the HF radiocommunications any model that does not include the trough is not complete.  相似文献   

2.
Measurements of the wave emission of the topside ionosphere made onboard the APEX satellite using the electric component of the wave field in the 0.1–10 MHz frequency band are presented. At middle latitudes a wave intensity decrease was observed in the broad-band spectrum of the electrostatic noise at the electron cyclotron frequency. It is shown that a break in the spectrum of electrostatic modes at the electron cyclotron frequency (the absence of the plasma eigen-frequencies) may be a cause of the observed effect. The increase of the intensity at the electron cyclotron frequency in the ionospheric trough and at latitudes above the trough region as compared to middle latitudes may be explained by the capture by plasma irregularities of the electromagnetic emission of the auroral electron fluxes.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 3, 2005, pp. 201–208.Original Russian Text Copyright © 2005 by Izhovkina, Prutensky, Pulinets, Kiraga, Klos, Rothkael.  相似文献   

3.
Gdalevich  G. L.  Izhovkina  N. I.  Ozerov  V. D. 《Cosmic Research》2003,41(6):561-566
The observational data on the plasma density and electron component temperature in the region of the geomagnetic equator in the ionosphere F layer are presented. The measurements have been conducted by scientific equipment onboard the Kosmos 900 satellite (on August 7, 1979). A plasma cavern was observed in this region. It is shown that the formation of the cavern may be related to the attenuation of the electrostatic plasma instability and plasma vortices in the upper ionosphere at the geomagnetic equator.  相似文献   

4.
The theoretical models of the formation of the three-dimensional quasi-stationary structures of variations of density and electrostatic potential in a multicomponent magnetosphere plasma are considered. On the basis of the perturbation method, we have studied the domains of the parametric space, where the occurrence of nonlinear quasi-stationary ion-acoustic and electron-acoustic structures are possible. For these structures, the velocities of motion along the direction of the magnetic field are estimated, together with the longitudinal and transverse scales with respect to the direction of the Earth's magnetic field. The calculated dependences of the scales l and l || of the structures on the plasma parameters in the three-component plasma allow one to compare the results of the considered theoretical models with new experimental data of measuring the form of soliton structures onboard the FAST, POLAR, and GEOTAIL satellites.  相似文献   

5.
Statistical properties of magnetic field and plasma flux fluctuations outside the Earth’s magnetosphere are studied on various time scales based on the INTERBALL-1 satellite data. The analysis of “rough” turbulence characteristics has shown that turbulence properties in various parts of the magnetosheath are distinct. The spectral density of the magnetic field undergoes a break at a frequency of ∼0.5 Hz. As a more “fine” characteristic of the fluctuations on various time scales, changes in the shape and parameters of the probability density function were studied. The analysis of the height of a maximum of the probability density function P(0) and of the kurtosis values have shown the presence of two asymptotic modes of P(0), which are characterized by different power laws. The critical scale, on which the properties of P(0) change, corresponds, presumably, to the scales of the Larmor radius of ions. Based on the results of studying structural functions of various orders, the conclusion is drawn that small-scale turbulence in the foreshock and magnetosheath is described by different phenomenological models.  相似文献   

6.
A cause of the instability of equilibrium of plasma ion composition is discussed and exemplified by the data on a burst of amplitudes of small-scale plasma irregularities in the plasmaspheric transition region during an evening launch of the Vertikal'-10 rocket. This burst is accompanied by a simultaneous decrease in the average plasma density at altitudes of 700–1100 km. Specific features of the observed events are compared to postsunset incoherent scatter radar observations of the ion diffusion flux density. It is demonstrated that the instability is caused by peculiarities of the protonosphere–ionosphere interaction associated with a sharp difference between thermal conditions of the ionospheric and protonospheric air shortly after sunset. The induced nonuniformity of postsunset cooling of the protonospheric–ionospheric plasma causes density irregularities in ion diffusion fluxes and generates local bunches of heavy ions, which are usually only a minor impurity to lighter ions. As a result, conditions are created that are favorable for the nondissipative accumulation of potential energy for the mutual opposition of two or more groups of ions with different masses and for the subsequent release of this energy by a threshold excitation of impurity-driven plasma instabilities.  相似文献   

7.
Shuvalov  V. A.  Kochubei  G. S.  Priimak  A. I.  Gubin  V. V.  Tokmak  N. A. 《Cosmic Research》2003,41(4):413-423
A methodology of the physical modeling of radiation electrification of the leeward surfaces of the materials used to construct space vehicles by auroral electrons, when the vehicles are flown supersonically around by the ionospheric plasma at low and middle heights, is developed. Based on laboratory modeling, numerical experiments, and in situ observations, the dependencies of charging levels and equilibrium potentials on the ratio of the auroral electron density to the positive ions in the near wake behind the body and in the undisturbed plasma are determined.  相似文献   

8.
According to the data of the BMSW/SPEKTR-R instrument, which measured the density and velocity of solar wind plasma with a record time resolution, up to ~3 ×10–2 s, the structure of the front of interplanetary shocks has been investigated. The results of these first investigations were compared with the results of studying the structure of the bow shocks obtained in previous years. A comparison has shown that the quasi-stationary (averaged over the rapid oscillations) distribution of plasma behind the interplanetary shock front was significantly more inhomogeneous than that behind the bow-shock front, i.e., in the magnetosheath. It has also been shown that, to determine the size of internal structures of the fronts of quasi-perpendicular (θBN > 45°) shocks, one could use the magnetic field magnitude, the proton density, and the proton flux of the solar wind on almost equal terms. A comparison of low Mach (М А < 2), low beta (β1 < 1) fronts of interplanetary and bow shocks has shown that the dispersion of oblique magnetosonic waves plays an essential role in their formation.  相似文献   

9.
Bezrukikh  V. V.  Kotova  G. A.  Lezhen  L. A.  Lemaire  J.  Pierrard  V.  Venediktov  Yu. I. 《Cosmic Research》2003,41(4):392-402
We present the results of temperature and density measurement of plasmaspheric protons under quiet and disturbed conditions in the night and dayside sectors of the plasmasphere obtained with the Auroral Probe/Alpha-3 instrument during September 1996 and January 1997. According to the experimental data, the proton temperature in the night sector of the plasmasphere depends on the level of geomagnetic disturbance: it is found that at night hours the values of temperatures inside the plasmasphere at 2.4 < L < 3.5 decreased considerably after the commencement of a geomagnetic storm. The temperature decrease, as a rule, was accompanied by the formation of a flat plateau on the density distribution n(L) at 2.4 < L < 3.5. The above experimental facts (decreasing proton temperature and formation of a flat part on the n(L) distribution) allow us to conclude that the decrease in the proton temperature in the night sector of the plasmasphere connected with magnetic disturbances is caused by the filling of field tubes (depleted after the commencement of the storm) with colder ionospheric plasma. The proton temperature in the dayside sector of the plasmasphere virtually does not depend on the level of the geomagnetic disturbance.  相似文献   

10.
The dynamics of near plasma sheet electrons and ions (E 0.1–12.4 keV), ring current protons (E i 41–133 keV), and energetic electrons from the Earth's radiation belts (E e 97–1010 keV) is considered using the data from the Gorizont-34and Gorizont-35geosynchronous satellites from March 11–25, 1992. Peculiarities of this period are a long (more than 4 days) interval of the northward interplanetary magnetic field (B z> 0) and a high-speed stream of the solar wind with an enhanced particle density. The SC and compression of the magnetosphere to the geosynchronous orbit (GMC) preceded this interval. Under quiet and moderately disturbed geomagnetic conditions and under a prolonged northward interplanetary magnetic field, we observed a significant decrease of fluxes and softening of spectra of the electron component of plasma in the energy ranges of 0.1–12.4 keV and 97–1010 keV, and of the ion component of plasma at energies of 0.1–4 keV, while the intensity of 5–12.4 keV ion fluxes increases by about one order of magnitude. The peculiarities of distributions of energetic particle fluxes observed in the period under consideration can be associated with significant variations of the convection conditions and a decreased or fully suppressed injection of energetic electrons into the geosynchronous orbit region.  相似文献   

11.
Rothkaehl  H.  Stanisławska  I.  Blecki  J.  Zbyszynski  Z. 《Cosmic Research》2003,41(4):340-344
The polar cusp being a region of the free access of the solar wind into the inner magnetosphere is also the site of turbulent plasma flow. The cusp area at low altitudes acts like a focus of a variety type of instability and disturbances from different regions of the Earth. Daily f 0 F2 frequencies are discussed regarding the cusp position. The high time resolution wave measurements together with electron and ion energetic spectra measurements registered on the board the Freja satellite and Magion-3 and the electron density at the peak of f 0 F2 layers collected from ground-based ionosonde measurements were used to study the response of ionospheric plasma within the cusp–cleft region to the strong geomagnetic storm. In this paper we present the response of the ionospheric plasma to the disturbed conditions seen in the topside wave measurements and in the ionospheric characteristics maps obtained from the ground-based VI network. The need of the cusp feature model for radio communication purposes is advocated.  相似文献   

12.
Kirpichev  I. P. 《Cosmic Research》2004,42(4):338-348
The results of an analysis of the pressure distribution of the hot magnetosphere plasma and transverse currents in the plasma at distances from 8R E to 12R E are presented. The data were taken in the vicinity of the equatorial plane onboard the Interball-1 satellite during its passages on October 13, 1995 and March 13, 1996. The pressure was determined from the measurements of particle fluxes by the CORALL, DOK-2, and SKA-2 instruments. The specific features of this experiment made it possible to calculate the pressure with a high accuracy and to determine the distribution of the magnetostatically equilibrium currents in the plasma. It is shown that at the parts of the monotonous increase of the pressure in the earthward direction one can detect regions of plateau in the plasma pressure. A possible origin of the small-scale variations and regions with plateau are discussed. A comparison of the measured pressure profiles with the pressure profiles in the Tsyganenko and Mukai-2003 model is performed. Transverse currents flowing in the plasma are calculated assuming magnetostatic equilibrium.  相似文献   

13.
We present the results of experimental studies of high frequency (with periods of seconds and tens of seconds) and low frequency (with periods of minutes and tens of minutes) large variations of the ion flux and magnetic field magnitude in the magnetosheath. It is shown that, on average, the relative amplitudes of these variations are approximately two times higher than similar values characteristic for the undisturbed solar wind. The averaged spatial profile of these values and their variations across the magnetosheath is obtained, as are the dependencies of normalized plasma fluxes and their variations on the place of entrance of a given plasma element into the magnetosheath. Using one particular example, a good coincidence between the time profiles of ion fluxes measured aboard two spacecraft separated by a distance of 10R E along the magnetosheath is demonstrated.  相似文献   

14.
The results of the satellite low-latitude and mid-latitude measurements of the disturbed plasma concentration, electron temperature, and quasi-stable electric field at heights of ~900 km after sunset are discussed. It is shown that the sharp fronts of changes in the electron temperature and plasma density observed in the experiment onboard the Intercosmos-Bulgaria-1300 satellite in the low-latitude (and equatorial) outer ionosphere can be related to damping of the oscillations of plasma electrons at local decreases of the plasma density (plasma “pits”) and formation of the vortex plasma structures at density and temperature gradients, which promotes conservation of ionosphere irregularities and makes the fronts of concentration variations steeper. Nonmonotonic variations in the plasma conductivity for the ionosphere currents in unstable plasma can be a cause of observed nonmonotonic disturbances of the vertical component of the “constant” electric field.  相似文献   

15.
Using daily and hourly data on solar plasma parameters at the Ulysses spacecraft orbit and at 1 AU it is demonstrated that there is a simple relationship between plasma temperature and density with the heliospheric magnetic field (HMF). A mathematical expression connecting HMF with plasma temperature and density is suggested. Correlation coefficients and regression equations for measured and calculated magnetic fields are presented for the 1990–2009 period according to Ulysses spacecraft data and for 2003–2010 at 1 AU (OMNI database). The roles played by density, temperature, and high-speed solar wind streams in forming the magnetic-field peaks are demonstrated using hourly data of OMNI2 and Ulysses.  相似文献   

16.
We present the results of a cross-correlation analysis made on the basis of Spearman’s rank correlation method. The quantities to correlate are daily values of the fluence of energetic electrons at a geosynchronous orbit, intensities of ground and interplanetary ultra-low-frequency (ULF) oscillations in the Pc5 range, and parameters of the solar wind. The period under analysis is the 23rd cycle of solar activity, 1996–2006. Daily (from 6 h to 18 h of LT) magnetic data at two diametrically opposite observatories of the Intermagnet network are taken as ground-based measurements. The fluxes of electrons with energies higher than 2 MeV were measured by the geosynchronous GOES satellites. The data of magnetometers and plasma instruments installed on ACE and WIND spacecraft were used for analysis of the solar wind parameters and of the oscillations of the interplanetary magnetic field (IMF). Some results elucidating the role played by interplanetary ULF waves in the processes of generation of magneospheric oscillations and acceleration of energetic electrons are obtained. Among them are (i) high and stable correlation of ground ULF oscillations with waves in the solar wind; (ii) closer link of mean daily amplitudes of both interplanetary and ground oscillations with ‘tomorrow’ values of the solar wind velocity than with current values; and (iii) correlation of the intensity of ULF waves in the solar wind, normalized to the IMF magnitude, with fluxes of relativistic electrons in the magnetosphere.  相似文献   

17.
Variations of turbulence properties of the plasma sheet during geomagnetic substorms are investigated using observations of the INTERBALL Tail Probe satellite. The periods are chosen when the satellite was inside the plasma sheet. Fluctuations of the plasma bulk velocity across the plasma sheet are studied for the growth, expansion, and recovery phases of geomagnetic substorms on October 14, 1997; October 30, 1997; and December 16, 1998. It was demonstrated that the level of turbulence increases considerably after the onset of the substorm expansion phase and slowly decreases nearly to the presubstorm level later. The correlation times of plasma fluctuations in the Z-direction are estimated, and diffusion coefficients in the Z-direction are calculated.  相似文献   

18.
Based on Polar satellite data, the authors have studied the auroral disturbances that arose during the passage by the Earth of compressed plasma regions formed in front of high-speed solar wind streams (the CIR region) and in front of magnetic clouds (the Sheath region). The aurorae observed by the Polar satellite possessed basic signatures of a substorm: a localized onset and expansion toward the pole and westward and eastward. However, in these cases they had a very large size in longitude and latitude and occupied a very large area. All disturbances observed by the Polar satellite during the Sheath and CIR regions of the solar wind in December of 1996, in 1997–1998, and in 2000 were analyzed. Eight events during disturbance development in the ionosphere, when the Geotail satellite was located in the plasma sheet of the magnetospheric tail, were selected. It is shown that in all selected cases some typical signatures of substorm development in the magnetospheric tail were observed, namely: (1) fast plasma flows (flow reversal, i.e., from tailwards to Earthwards) and (2) a sharp decrease of the total pressure, which followed an interval of total pressure increase. One can draw the conclusion that in the CIR and Sheath regions with a high solar wind density, substorm disturbances of a specific type are observed, with large latitudinal and longitudinal size (sometimes occupying the entire polar cap).  相似文献   

19.
The results of an analysis of velocity fluctuations in the plasma sheet of the Earth's magnetotail measured onboard INTERBALL Tail Probe satellite are presented. The hodographs of the velocity in directions (Y, Z) and correlation functions are presented for a number of passages when the satellite was in the plasma sheet for a long time. The turbulent diffusion coefficients are calculated. A comparison of the obtained diffusion coefficients with those predicted theoretically in [1] is carried out. It is shown that the results of observations confirm theoretical predictions.  相似文献   

20.
利用一维磁流体动力学模型,对圆柱形霍尔推力器的放电等离子体进行了数值模拟。考虑了等离子体的电离、中和、碰撞、玻姆扩散及阳极鞘层的影响,由龙格-库塔方法得到离子速度、离子数密度、电子的温度等分布,其与实验结果有很好的一致性。经分析可知,此分布与电磁场的分布、粒子碰撞及电子阻抗等因素有关,并分析了电子温度分布、电子速度与电磁场的关系。结果表明,离子数密度沿通道方向增加,但在出口附近略有下降;而中性粒子数密度逐渐降低;离子速度在出口达到最大值,电子速度在下游有较大的梯度分布。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号