首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
选用了3种不同规格的HTPB粘合剂、3种高性能键合剂和3种不同粒度的球形铝粉来研究以TDI为固化剂的高固体含量(88%)的RDX/AP/Al/HTPB丁羟推进剂的力学和工艺性能,研究结果表明,使用高分子量、低粘度的HTPB粘合剂和3^#高性能键合剂能明显改善RDX/AP/Al/HTPB推进剂宽温度范围内的力学性能和工艺性能;采用细粒度球铝粉能使工艺性能得到改善,而对力学性能影响不大。  相似文献   

2.
对少烟HTPB/RDX/AP/AL推进剂能量性能进行了理论计算,通过BSFΦ165和BSFΦ315试验发动机试验,考察了试验发动机类型,工作压力对比冲效率的影响,与高能丁羟推进剂的比冲效率进行了比较。  相似文献   

3.
概述了GAP/AN推进剂的特性,研制状况及发展潜力,针对目前该推进剂的各项性能水平(能量性能,燃烧性能,力学性能)提出了该推进剂存在的问题及改善方法。  相似文献   

4.
介绍了国外对GAP/AN复合燃烧性能研究的新进展,探讨了少量添加剂对GAP/AN推进剂燃速特征的影响,评价了GAP/AN推进剂的印感性能。  相似文献   

5.
AP/HMX HTPB推进剂的能量特性   总被引:5,自引:1,他引:5  
介绍了AP/HMX HTPB推进剂能量特性。理论计算表明,HMX取代部分AP可增加比冲,降低火焰温度和燃气中HCL含量,HMX代替20%AP,比冲增加25.46N.s.kg^-1。用BSFΩ  相似文献   

6.
为了进行老化评价研究,选择和研制了三种不同固体含量的(88~91%)端羟基聚丁二烯(HTPB)推进剂。已经证实,88%固体含量的HTPB推进剂符合以前提出的老化模型。这种老化模型已成功地进一步用于较高固体含量的推进剂以及其它计划用的HTPB推进剂的实测力学性能老化数据。采用这种老化模型,根据加速热老化试验数据予测了长期力学性能,予测数据与六年实测老化数据相当一致。利用予测的推进剂破坏性能,结合火箭发动机的要求,来确定予先选定安全裕度的发动机药柱的使用寿命。本文列出了各种复合推进剂老化速率的比较数据。根据老化结果的分析,提出了一个宽范围老化行为的数学表达式。  相似文献   

7.
碳硼烷衍生物对固体推进剂燃烧性能影响研究   总被引:1,自引:0,他引:1  
研究了碳硼烷丙烯酸甲酯(CMP)对AP/NG和RDX/NG推进剂燃速的影响,结果表明,随CMP含量的增大,AP/NG推进剂燃速增大,压强指数呈下降趋势;在压强为8.0~10.0MPa范围内,CMP对提高RDX/NG推进剂的燃速作用最强,且随CMP含量增高,RDX/NG推进剂压强指数增大,CMP对AP和NG相变温度,熔融温度都有影响,并加速AP和RDX的分解。  相似文献   

8.
介绍了温度变化、添加剂种类与含量等因素对 AP/HTPB 推进剂断裂能影响的研究.实验结果表明,该推进剂的断裂能随温度升高而降低;键合剂可以改善推进剂的抗撕裂能力,提高其断裂能.当推进剂的粘附指数接近1时,推进剂的断裂能最大。  相似文献   

9.
采用标准试验发动机实测结果及理论计算,研究了HTPB/HMX推进剂比冲与发动机工作压强之间的关系,研究结果表明,在发动机相同的工作条件下,工作压强由5MPa提高到10MPa可使推进剂比冲净增102N.s/kg发动机工作压强最好选取大于6MPa。这一结果为发动机设计提供了参考依据。  相似文献   

10.
用NEPE推进剂进行湿热加速老化试验获得了推进剂在不同湿热老化条件下抗拉强度和弹性模量随老化时间的变化规律,建立了推进剂湿热老化失效物理模型,并提出了将弹性模量作为失效判据预估推进剂贮存寿命的方法。分别用抗拉强度和弹性模量作为失效判据,对推进剂贮存寿命进行估算。结果表明:将弹性模量作为失效判据预估NEPE推进剂贮存寿命的方法可行。  相似文献   

11.
考虑泊松比的固体发动机装药贮存寿命预估   总被引:2,自引:0,他引:2  
以含单个小孔隙的立方体为代表性体积单元,结合弹性力学公式,推导了固体推进剂空穴率与瞬时泊松比的关系,得到泊松比随推进剂老化的变化规律.通过固体推进剂加速老化试验,得到固体推进剂瞬时模量及最大延伸率随贮存时间的变化规律.以固体推进剂瞬时模量和瞬时泊松比为老化参数,结合三维粘弹性有限元计算方法,计算了某发动机装药结构不同贮...  相似文献   

12.
通过对双基推进剂药柱进行初始气孔率热老化试验研究。探讨了用累积损伤理论和粘弹性分析方法来预测药柱储存寿命的理论基础和应用价值,提出了一种准确,经济,方便的预测药柱储存寿命的新方法。  相似文献   

13.
添加剂对 NEPE推进剂力学性能的影响研究(Ⅰ)   总被引:2,自引:1,他引:2  
采用单向拉伸法和化学溶胀法研究和剖析了添加剂对NEPE推进剂力学性能的影响机理。单向拉伸实验表明,添加剂加入推进荆后,可以显著提高NEPE推进荆的力学性能;化学溶胀法分析表明,加入添加剂使推进剂的凝胶含量和化学交联密度稍有降低;通过进一步数据处理表明,添加剂的加入明显提高了推进剂的物理交联密度而几乎不影响填料/基体的相互作用。因此综合分析认为,加入添加剂可提高推进剂的物理交联密度,从而改善NEPE推进剂的力学性能。  相似文献   

14.
RDX/AP/HTPB推进剂热分解特性研究   总被引:2,自引:0,他引:2  
利用高压差示扫描量热仪(PDSC)研究了RDX/AP/HTPB推进剂系列配方的热分解性能,发现配方组分的改变对RDX/AP/HTPB推进剂的热分解性能有影响,突出表现在RDX/AP/HTPB推进剂中RDX分解峰变宽,AP放热分解效应增强。推进剂中添加Al粉后,RDX的分解受到抑制,而AP的分解却得到增强。  相似文献   

15.
测试了高氯酸铵/硝胺丁羟复合推进剂的热感度、摩擦感度和冲击感度。感度的测试结果表明,用硝胺RDX或HMX部分取代AP制成硝胺丁复合推进剂后,这种复合推进剂的感度要高于仅含高氯酸铵的推进剂的感度,随着RDX或HMX含量的增加,其感度值随之增大,但增逐渐下降,但在高氯酸铵推进剂中加入卡托辛燃速催化剂以后,制成的高燃速推进剂,其摩擦感度明显增大。  相似文献   

16.
主要针对喷管进行高低燃温组合推进剂与纯高燃温推进剂下的喉衬烧蚀实验分析,低燃温推进剂为丁羟低温推进剂和SCH?12低温推进剂。实验研究表明,丁羟低温推进剂和高温推进剂组合推进剂的烧蚀率为0.112 mm/s,SCH?12低温推进剂和高温推进剂为0.115 mm/s,纯高燃温推进剂的烧蚀率为0.133 mm/s,证明了高低燃温组合推进剂降低喉衬烧蚀的有效性与可行性。分析了然后对不同含量低燃温推进剂对比冲性能的影响,结果显示,使用比冲下降小、燃温低的推进剂能有效降低喉衬烧蚀,并对发动机比冲影响较小。  相似文献   

17.
高燃速少烟火箭推进剂可用于高加速战术禅火箭发动机。德国对三种高氨酸镇含量不同且不加铝的推进剂的性能作了研究。aAP/HMX/HTPB推进剂主要成分:高氨酸按(AP)840’0~92“。,奥克托金(HMX)O~254b.端羟基聚了二烯(HTPB)和已二酸二异辛酯()()/\)8%~16[。。考虑到加工性能.固体含量最大为86%~88%,在能保持预混药浆流动性的情况下,不含**x的推进利性能为2430~2460N·S儿g。bAP/PU/TMETN推进剂主要成分:AP50%~SO%.聚氨酯(PU)4%~20q6.三羟甲氧基已烷三硝酸酯(TMETN)12%~4096。…  相似文献   

18.
液氧/甲烷燃气发生器点火方案研究   总被引:1,自引:0,他引:1  
在对比化学点火、火药点火及电火花点火优缺点的基础上,选取了技术成熟、点火可靠的火药点火用于液氧/甲烷燃气发生器热试。用黑火药点燃固体推进剂的点火药量计算公式估算了火药点火药量,给出了液氧/甲烷燃气发生器火药点火器的其它参数。根据液氧/甲烷推进剂特点,确定了火药燃气-液氧-甲烷依次进入燃气发生器的点火时序。成功进行了4次液氧/甲烷燃气发生器热试,结果表明:液氧/甲烷燃气发生器点火起动过程平稳,点火品质较好,点火方案合理,适于较宽工作条件下的液氧/甲烷点火。  相似文献   

19.
GAP高能推进剂是固体推进剂的重要发展方向。为掌握该推进剂的老化特性,开展了含CL-20/HMX的GAP高能推进剂高温加速老化试验研究。结果表明,老化过程中推进剂模量显著升高、伸长率快速降低,且密度下降、燃速上升。采用SEM、XRD、凝胶分数、交联密度、HPLC等理化分析方法对推进剂老化特性进行了分析,揭示了CL-20与HMX在硝酸酯中的溶解、重结晶生成CL-20/HMX共晶,是造成GAP高能推进剂该老化特性的主要原因。  相似文献   

20.
PEPA/AP膏体推进剂配方研究   总被引:5,自引:2,他引:5  
开展了PEPA/AP型膏体推进剂配方研究。结果表明,PEPA/AP膏体推进剂的流变行为遵循Ostwalld幂定律,通过增稠剂种类和含量的改变可有效调节膏体推进剂的流变参数,增调剂NJ-4可使膏体推进剂具有良好的稳定性并保持稳定的流动性。燃烧调节剂FC-1能有效改善配方的点火和燃烧性能,拓宽了燃速范围(6.86MPa下,燃速15mm/s指高到15mm/s以上),显著降低了燃速压强指数(2.94-8.83MPa下,压强指数由0.71降至0.4)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号