首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A weak but statistically reliable dependence of the diurnal activity of oscillations in the ionospheric Alfvén resonator on orientation of the interplanetary magnetic field ahead of the magnetospheric front has been detected based on observations of ULF oscillations at Sayan solar observatory Mondy of the Institute of Solar–Terrestrial Physics. The interpretation of the result has been proposed. The essence is that the electromagnetic fluctuations penetrate into the magnetosphere from the interplanetary environment and influence the ionospheric resonator. The formulation of the problem and the method of solving it are part of the broad program of the experimental and theoretical study of the influence of the interplanetary magnetic field on the oscillation regime of ULF oscillations of the magnetosphere.  相似文献   

2.
We present the results of a cross-correlation analysis made on the basis of Spearman’s rank correlation method. The quantities to correlate are daily values of the fluence of energetic electrons at a geosynchronous orbit, intensities of ground and interplanetary ultra-low-frequency (ULF) oscillations in the Pc5 range, and parameters of the solar wind. The period under analysis is the 23rd cycle of solar activity, 1996–2006. Daily (from 6 h to 18 h of LT) magnetic data at two diametrically opposite observatories of the Intermagnet network are taken as ground-based measurements. The fluxes of electrons with energies higher than 2 MeV were measured by the geosynchronous GOES satellites. The data of magnetometers and plasma instruments installed on ACE and WIND spacecraft were used for analysis of the solar wind parameters and of the oscillations of the interplanetary magnetic field (IMF). Some results elucidating the role played by interplanetary ULF waves in the processes of generation of magneospheric oscillations and acceleration of energetic electrons are obtained. Among them are (i) high and stable correlation of ground ULF oscillations with waves in the solar wind; (ii) closer link of mean daily amplitudes of both interplanetary and ground oscillations with ‘tomorrow’ values of the solar wind velocity than with current values; and (iii) correlation of the intensity of ULF waves in the solar wind, normalized to the IMF magnitude, with fluxes of relativistic electrons in the magnetosphere.  相似文献   

3.
On the basis of experimental data obtained at exposure of solid-state track detectors in the magnetosphere of the Earth during solar flares and in quiet Sun periods, an estimate of possible contribution of singly charged oxygen ions to the flare particle fluxes is made. A possibility is considered of the appearance in the vicinity of the solar system of singly ionized oxygen ions generated on stars.  相似文献   

4.
The interaction of Phobos with the solar wind is considered both theoretically and using the experimental data of the FGMM magnetometer that were obtained in the course of the Phobos-2mission. It is demonstrated that the ions serving as a source of excitation of magnetosonic waves can be accumulated around Phobos. Examination of the magnetometer data has shown that the observed effects of a local decrease of the magnetic field near the Phobos orbit correspond to magnetosonic waves. Observation of these effects depends on the geometry of an experiment.  相似文献   

5.
A critical analysis of existing theories of the magnetospheric resonator for fast magnetosonic waves is performed. A new variant of the theory is suggested, according to which the near-Earth part of the plasma sheet plays the role of the resonator. It is shown that the magnetosonic wave is locked inside this region over its entire boundaries. The eigen frequencies of resonator modes are in a good agreement with observed values (0.8, 1.3, 1.9, 2.6, 3.4, ... MHz), both when estimated in the order of magnitude and when calculated exactly in the context of a simple model.  相似文献   

6.
The features of the excitation of spatially localized long-period (10–15 min) irregular pulsations with a maximum amplitude of ~200 nT at a geomagnetic latitude of 66° in the morning sector 5 MLT are considered. Fluctuations were recorded against the background of substorm disturbances (maximum AE ~ 1278 nT). Antiphase variations of plasma density and magnetic field accompanied by vortex disturbances of the magnetic field both in the magnetosphere and the ionosphere have been recorded in the magnetosphere in this sector. Compression fluctuations corresponding to a slow magnetosonic wave have been recorded in the interplanetary medium in the analyzed period. It is assumed that pulsations have been excited in the localization of the cloud of injected particles in the plasma sheet by compression fluctuations caused by variations of the dynamic pressure of solar wind.  相似文献   

7.
A comparative analysis has been carried out of the parameters of energetic electrons in the tail of the Earth’s magnetosphere that belong to three sources, i.e., electrons of solar origin, electrons generated in the magnetosphere of Jupiter, and electrons in the Earth’s magnetosphere. The differences in the time profiles of fluxes and energy spectra of the three electron sources, their relation to fluxes outside the magnetosphere, and periods of the occurrence of electron fluxes of each type are considered.  相似文献   

8.
We consider the results of measurements of density and temperature of cold plasma in the dayside sector of the plasmasphere. The measurements were made by Interball-1 (Tail Probe) in November 1995, by Interball-2 (Auroral Probe) in August 1996 (the periods close to the solar cycle minimum), and by the Magion-5 satellite in June 2000 (this period is close to the solar cycle maximum). It was shown by the measurements in the dayside sector of the plasmasphere that, contrary to expectations of model distributions of temperature in the plasmasphere [1, 2], under quiet geomagnetic conditions the temperature of hydrogen ions of the cold plasma filling the plasmasphere was observed to increase at altitudes 5000 km < H < 10000 km. Its altitude gradient was equal to ~0.5 deg/km, the geomagnetic latitude being variable within the limits 10° < λ < 40°. The maximum values of temperature of protons, as measured by Tail Probe and Auroral Probe deep in the plasma-sphere, were equal to ~4000–6000 K. According to the data obtained by the Magion-5 satellite in the depth of the plasmasphere, these temperatures varied within the limits 7500–8500 K. These results can be considered as some indication of a dependence of the plasmasphere thermal structure on the phase of the solar cycle. In the region 2.5 < L < 5 and at geomagnetic latitudes λ < 40°, drops of the ion temperature were regularly observed with values reaching ~2000 K.  相似文献   

9.
Eiges  P. E.  Zastenker  G. N.  Safrankova  J.  Nemecek  Z.  Eismont  N. A. 《Cosmic Research》2001,39(5):432-438
Based on simultaneous measurements of ion fluxes made onboard the closely separated satellites Interball-1and Magion-4, the propagation velocity of middle-scale plasma structures in the Earth's foreshock relative to the solar wind flow is estimated. The derived value of this velocity allows these structures to be identified as a fast magnetosonic wave propagating upstream of the solar wind inflowing the Earth's bow shock. An evaluation is also made of the correlation length of these disturbances in the plane perpendicular to the Sun–Earth line. This length is approximately equal to 2R E.  相似文献   

10.
To construct models for hazard prediction from radiation belt particles to satellite electronics, one should know temporal behavior of the particle fluxes. We analyzed 11-year variation in relativistic electron flux (E>2 MeV) at geosynchronous orbit using measurements made by GOES satellites during the 23rd sunspot cycle. As it is believed that electron flux enhancements are connected with the high-speed solar wind streams and ULF or/and VLF activity in the magnetosphere, we studied also solar cycle changes in rank order cross-correlation of the outer radiation belt electron flux with the solar wind speed and both interplanetary and on-ground wave intensity. Data from magnetometers and plasma sensors onboard the spacecraft ACE and WIND, as well as magnetic measurements at two mid-latitude diametrically opposite INTERMAGNET observatories were used. Results obtained show that average value of relativistic electron flux at the decay and minimum phases of solar activity is one order higher than the flux during maximum sunspot activity. Of all solar wind parameters, only solar wind speed variation has significant correlation with changes in relativistic electron flux, taking the lead over the latter by 2 days. Variations in ULF amplitude advance changes in electron flux by 3 days. Results of the above study may be of interest for model makers developing forecast algorithms.  相似文献   

11.
We have analyzed oscillations in the Pc5 range recorded in the outer region of the evening magnetosphere onboard 5 THEMIS satellites when all vehicles were moving with a small distance along one and the same orbit. Gradients of the spatial structure of oscillations and fluxes of energetic protons are determined. The observed phase shifts of the oscillation field between the satellites are presumably caused by their sunward (westward) propagation with azimuthal wave numbers m ~ 30–60. According the data of particle detectors, non-equilibrium character of the distribution of protons is found: their non-monotonous distribution in energy and sharp spatial heterogeneity. The calculated parameters of plasma and oscillations are not consistent with the assumption on drift-mirror instability as a source of the oscillations. A complete theory of these waves should include effects of the finite Larmor radius and simultaneous existence of two types of nonequilibrium plasma.  相似文献   

12.
Using a single event as an example, we make an analysis of the time development of a substorm and estimate its influence on the motion of the low-latitude boundary of the magnetosphere. To this end, we compare the data on plasma and magnetic field obtained by five spacecraft (WIND, INTERBALL-1, GEOTAIL, GOES-8, and GOES-9) with measurements made by ground-based stations. It is shown that the release of energy of the geomagnetic tail begins from a disruption of the current sheet near the Earth. The high-speed plasma stream that transfers a magnetic flux to the Earth and can have an effect on the magnetic field configuration near the Earth is detected later. Almost simultaneously with a substorm onset a series of magnetopause crossings has been detected by the INTERBALL-1 satellite on the evening side of the low-latitude magnetosphere. In this paper we consider some of possible causes of this motion of the magnetosphere boundary, including variations of parameters of the solar wind, Kelvin-Helmholtz instability, and substorm processes. It is shown that fast motions of the magnetopause are detected almost simultaneously with field variations in the near magnetotail of the Earth and geomagnetic pulsations Pi2 on ground-based stations. A sufficiently high degree of correlation (K = 0.67) between the amplitude of Pi2 pulsations and the amplitude of magnetic field variations near the magnetopause is probably indicative of the connection of short-term motions of the magnetosphere boundary with the tail current disruption and the process of formation of a substorm current wedge.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 4, 2005, pp. 248–259.Original Russian Text Copyright © 2005 by Nikolaeva, Parkhomov, Borodkova, Klimov, Nozdrachev, Romanov, Yermolaev.  相似文献   

13.
Large-scale toroidal Pc5 pulsations are commonly treated as Alfven oscillations of a magnetic field line. According to observations, their longitudinal structure is described well by theory. At the same time, the longitudinal structure of azimuthal small-scale poloidal Pc5 pulsations is virtually unknown. These pulsations are associated with ballooning disturbances described by a system of coupled equations for Alfvenic and slow magnetosonic (SMS) modes. In this work, the Voigt model is used to describe the equilibrium finite-pressure plasma configuration in an inhomogeneous magnetosphere plasma in a curved magnetic field. Spectral characteristics and the spatial structure of natural ballooning modes are calculated for this model. The model calculations demonstrate the possibility of different longitudinal scales for transverse and longitudinal magnetic components of oscillations near the top of the field line.  相似文献   

14.
Is it theoretically possible to perform magnetotelluric sounding in order to determine the conductivity of a planet’s interior based on the registration of variable electric and magnetic fields on a low-orbiting space probe? In this case, fast magnetosonic (FMS) waves in the planetary magnetosphere can play the role of sounding waves. It has been indicated that the registration of FMS-wave impedance (the ratio of the electric and magnetic components) onboard the probe actually makes it possible to estimate the planetary conductivity for a planet with a magnetosphere and ionosphere.  相似文献   

15.
We consider in detail the intense Pc5 pulsations of the magnetic field, riometric absorption, and electron fluxes occurred on the recovery phase of the strong magnetic storm on November 21, 2003. The global structure of these disturbances is studied using the world network of magnetometers and riometers supplemented by the data of particle detectors onboard the LANL geosynchronous satellites. The local spatial structure is investigated according to data of the regional network of Finnish vertical riometers and of stations of the IMAGE magnetic network. Though a certain similarity is observed in the frequency composition and time evolution of the variations of magnetic field and riometric absorption, the local spatial structure of these oscillations turns out to be different. It is suggested that these variations can be manifestations of oscillatory properties of two weakly connected systems: the magnetospheric MHD waveguide/resonator and the system cyclotron noise + electrons. The recorded Pc5 oscillations are, presumably, a result of excitation of the magnetospheric waveguide on the morning and evening flanks of the magnetosphere. At high velocities of the solar wind this waveguide can appear in a metastable state. Not only jumps in the solar wind density, but injection of electrons into the magnetosphere as well, can serve as a trigger for the waveguide excitation.  相似文献   

16.
This work is devoted to studying the processes of the acceleration of plasma particles in thin current sheets that appear during magnetospheric substorms in the Earth’s magnetosphere tail. A numerical model of magnetic dipolarization accompanied by plasma turbulence has been constructed and studied. The model allows one to investigate the particle acceleration due to the action of three principal mechanisms: (1) plasma turbulence; (2) magnetic dipolarization; (3) their simultaneous action. For the given velocity kappa-distributions, we obtained energy spectra of three types of accelerated particles, i.e., protons p+, ions of oxygen O+, and electrons e. It has been shown that the combined mechanism of dipolarization with turbulence (3) makes the largest contribution to the increase in the energy of protons and heavy ions as compared with a separate action of each of mechanisms (1) and (2); in this case, electrons accelerate less. The consideration of the joint action of acceleration mechanisms (1) and (2) can explain the apparition of particles with energies on the order of magnitude equal to hundreds keV in the Earth’s magnetosphere tail.  相似文献   

17.
A statistical analysis of the shape and location of the magnetopause according to the INTERBALL-1 satellite data for the period 1995–1997 is carried out. The instants of crossing the magnetosphere boundaries obtained by the plasma and magnetic data are compared with computations based on three empirical models, namely, Petrinec and Russel, 1996; Shue et al., 1997; and Shue et al., 1998. The state of the interplanetary medium (dynamic pressure of the solar wind plasma P d and the B z component of the interplanetary magnetic field) was determined by the measurements onboard the WIND spacecraft. We estimate the accuracy of the considered models for different groups of boundary crossings: single, multiple with small duration (less than 40 min), and multiple with large duration (more than 40 min). It is demonstrated that the small-scale motions of the boundary (<1R E) are observed more often in the dayside magnetosphere, especially near the cusp region. Large-scale boundary oscillations (>1R E) are more common in the tail region of the magnetosphere, namely, its flanks. Various models give similar results: about 50% of all events have deviations by more than 1R E from the model locations. In some cases, the deviation of the measured location of the magnetosphere boundary from the model prediction may be as large as 5–6R E for all three models considered, the actual boundary being more often located nearer to the Earth than the result of model computations. The best model is that of Shue et al., 1998, but it does not differ significantly from the other models.  相似文献   

18.
The spectrum analyzer AKR-X onboard the Interball-1 satellite at the beginning (August–October 1995) and at the end (August–October 2000) of satellite operation in perigees of its orbital motion recorded and analyzed electromagnetic emissions of the inner regions of the Earth’s plasmasphere in the frequency band 100–1500 kHz at distances of 1.1–1.8 R E. The observations have shown that the electromagnetic modes (the Z and LO modes escaping the magnetosphere) which are formed at the altitudes 600–4000 km are associated with the subauroral nonthermal continuum and with the recently discovered kilometric continuum. There are noticeable differences in the spectral character of these emissions during the minimum (1996) and maximum (2000) solar activity, when, as a rule, the LO mode escaping the plasmaphere and the continua are not present.  相似文献   

19.
Surkov  V. V.  Galperin  Yu. I. 《Cosmic Research》2000,38(6):562-573
A solution to the problem of current spreading is constructed in the case of relaxation of electric charges, which have arisen in the mesosphere for one reason or other. These currents penetrate into the conductive region with anisotropic conductivity of the D- and E-layers of the ionosphere, being transformed to a MHD-wave that propagates into the magnetosphere. Based on this solution, the form and spectrum of the generated MHD signal are calculated for Alfvenic and magnetosonic modes coming out to the ionosphere and magnetosphere. Electric charges and currents can arise, for example, in the space between a thunderstorm cloud and the ionosphere, or between the shock wave from a ground explosion and the ionosphere. Some signal parameters accepted in the model are close to those expected for high-altitude electric discharges of the Red Sprite type. The conditions are determined under which the Alfven impulse with an amplitude of up to 100 nT propagates in the magnetosphere above high-altitude discharge of this type. Such an impulse was recorded by the AUREOL-3 satellite after the ground explosion MASSA-1. Recently, this impulse was hypothesized to originate as a result of a high-altitude electric discharge. The hypothesis on a similar MHD pulse allows one to explain in a semiquantitative way the short burst of electron field-aligned acceleration observed by the DE-2 satellite over the Debbie hurricane. The high-altitude atmospheric discharge of this type can be a powerful, though short-time and local, source of electrons with kiloelectronvolt energies at low and middle latitudes. One could expect that such an effect causes a modified character of the so-called Trimpi-effect (a short-term disturbance of propagation of VLF waves in the ionosphere), and thus, it can be observable.  相似文献   

20.
Results of the analysis of specific features of solar activity, dynamics of solar cosmic ray fluxes, and state of the interplanetary medium are presented for the period December 5–18, 2006. The data analysis is based on new model concepts on coronal and interplanetary propagation of solar cosmic rays: partial capture into the magnetic field traps and oscillations at reflections from magnetic mirrors. Some new hypotheses about possible relations of the features of the interplanetary medium with processes in the Earth’s magnetosphere are put forward: the influence of the discrete interplanetary medium on processes in the Earth’s magnetosphere does exist always and, in this sense, it is a fundamental phenomenon; the discreteness of the inter-planetary medium can be one of the causes of geomagnetic substorms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号