首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
杨博  俞雪瑶  苗峻 《宇航学报》2016,37(9):1089-1097
针对直接敏感地平的红外地平仪-星光导航系统精度低的问题,提出通过建立扁率误差补偿函数,研究扁率引起的姿态角测量误差;建立地心矢量的姿态角误差模型,通过修正地球扁率误差来补偿姿态角,对卫星施加姿态偏转指令调整地心矢量偏移。同时基于SODERN地球红外辐射模型,考虑红外辐射强度随纬度和季节的变化建立真实红外辐射曲线,通过滤波算法获得精确的地球切线边缘的量测信息,提高红外地平仪测量精度。仿真结果表明,该方法有效提高了基于红外地平仪的星光导航定位方法的可靠性和精度,导航位置误差能达到500m左右,较原有系统提高3倍以上。  相似文献   

2.
红外地平仪姿态测量误差模型   总被引:1,自引:0,他引:1  
姜雪原  马广富  罗晶 《宇航学报》2003,24(2):138-143
分析得出地球扁率和红外辐射是扫描式红外地平仪测量误差的主要原因。针对地球扁率,基于方位角的确定,分别给出了滚动角和俯仰角的测量误差模型。在地球红外辐射方面,给出了确定地平仪扫人、扫出点位置的方法,进而给出地球红外辐射误差的计算方法。最后,通过算例,给出了有关仿真结果,对方法的有效性进行了验证。  相似文献   

3.
基于地球的椭球特性,讨论了对扫描式红外地球敏感器的测量值进行修正的问题。利用地球椭球的小扁率特性,给出了相应的一阶修正算法。与现有文献中的方法相比,给出的算法计算简单,具有较高的精度,仿真结果表明,对于中、低轨道而言该算法的精度优于0.01°  相似文献   

4.
本论文分上下两篇,给用于现代捷联惯导系统的主要软件算法设计提供一个严密的综合方法:将角速率积分成姿态角,将加速度变换或积分成速度以及将速度积分成位置。该算法是用两速修正法构成的,而两速修正法是具有一定创新程度的新颖算法,是为姿态修正而开发出来的,在姿态修正中,以中速运用精密解析方程去正积分参数(姿态,速度或位置),其输入是由在参数修正(姿态锥化修正,速度遥橹修正以及高分辨率位置螺旋修正)时间间隔内计算运动角速度和加速度的高速算法提供的,该设计方法考虑了通过捷联系统惯性传感器对角速度或比力加速度所进行的测量以及用于姿态其准和矢量速度积分的导航系旋转问题。本论文上篇定义了捷联惯导积分函数的总体设计要求,并开发出了用于姿态修正算法的方向余弦法和四元数法,下篇着重讨论速度和位置积分算法的设计。尽管上下两篇讨论中常常涉及到基本的惯性导航概念。然而,本论文是为那些已对基础惯导概念很熟悉的实际工作者而写的。  相似文献   

5.
刘延柱 《宇航学报》1999,20(4):13-17
本文讨论了地球扁率引起红外地平仪的姿态量测误差的数学模型,导出解析形式姿态误差计算公式,可在任意轨道根数和扫描轴安装角情况下用于误差补偿。算例表明,利用本文导出的解析公式与利用数值方法的计算结果完全一致。  相似文献   

6.
一种成像敏感器对月定姿算法   总被引:2,自引:0,他引:2  
王立  郝云彩 《宇航学报》2007,28(1):39-42
成像敏感器根据月像来确定卫星对月姿态角。分析了月球光学系统成像模型以及卫星两轴姿态角与月像边缘曲线方程的关系,利用分析结果并结合月像边缘点的曲线拟合提出了一种新的卫星对月定向姿态确定方法。此算法克服了非零姿态月像边缘的非圆现象并且在部分月像下也可完成姿态确定,仿真工作显示了新算法的有效性。  相似文献   

7.
基于开普勒二体运动修正地球扁率J2摄动项算法   总被引:2,自引:0,他引:2  
为了解决远程飞行器虚拟目标点的地球扁率J2摄动项修正的技术难点,提出一种基于开普勒二体运动推算地球引力模型J2摄动项的间接补偿的方法.该算法由基于二体运动时间推算J2摄动项飞行时间的计算模块和基于二体运动J2摄动落点修正2个计算模块构成.通过算法设计和数学仿真验证了算法的正确性,其中仿真结果表明,该算法有效解决地球扁率造成的虚拟目标点计算精度不足的问题,在算法层面与传统的地球扁率修正方法相比具有计算简单和计算速度快等优点,同时保证虚拟目标点计算达到精度要求.  相似文献   

8.
组合导航卡尔曼滤波对姿态角进行修正时,将惯导的平台角误差近似为姿态误差,会带来较大的数学模型误差,从而影响测姿精度。通过分析组合姿态算法中姿态作为量测信息时平台角误差与姿态角误差物理意义的不同,得到了两者的转换关系,从量测矩阵修正和观测值预处理两个方面对原有的姿态组合算法进行改进,有效降低了数学模型误差。仿真结果表明,改进后的姿态组合算法误差状态估算更加精确,能够有效地提高组合导航的测姿精度。  相似文献   

9.
研究用2个红外地球敏感器和1个星敏感器实现卫星自主导航的方法,地心矢量的测量精度是影响导航精度的重要原因之一,而地心矢量的测量又受到地球扁率的影响.研究地球扁率对地心矢量测量的影响,并提出一种零姿态扁率误差补偿方法,通过仿真验证了这种导航方法及扁率误差补偿算法的有效性.  相似文献   

10.
带有入轨姿态约束的迭代制导算法及应用研究   总被引:1,自引:0,他引:1  
针对需要满足一定入轨姿态约束的发射任务,研究一种带有入轨姿态角约束的迭代制导算法在运载火箭中的应用。该制导算法在传统迭代制导算法的基础上,将控制姿态角的最优解析表达式,通过二阶近似,展开为与时间相关的二次函数,可以同时满足入轨点速度、位置和姿态角约束。阐述了迭代制导的基本原理,给出带有姿态角约束的迭代制导算法的推导公式。在有相同姿态角约束的条件下,该算法能够保证入轨精度,与传统迭代制导算法相当,且对姿态角约束有较好的控制效果,运载能力损失较少。仿真结果表明,该算法对故障工况及不同姿态角约束具有一定的适应能力。  相似文献   

11.
徐旭  张振鹏 《宇航学报》1999,20(4):25-31
本文对将液体火箭发动机涡轮排气引入喷管所形成的加质流场进行数值模拟,求解多种气体混合流动的三维N-S方程,预示了加质发动机的性质,结果表明:将涡轮排气引入喷管不仅可以用于壁面的冷却,而且还有利于发动机性能的提高。  相似文献   

12.
本文介绍了对地定向三轴稳定卫星的圆锥扫描式地球敏感器的姿态测量原理、输出几何关系和数学模型,并以实际例子说明大角度姿态控制时必须注意敏感器输出的轴间耦合问题  相似文献   

13.
给出了基于地球球形假设的双圆锥地心方位确定算法,研究了考虑地球扁率的地心方位精确确定算法,给出了基于扁率修正的日地月自主导航算法。蒙特卡洛仿真表明,对于500km高度,对地定向三轴稳定的姿态运行模式的卫星,在地球敏感器噪声为0.1°(3σ),日、月敏感器噪声为0.05°(3σ)的情况下,导航位置精度能达到800m(3σ),速度精度能达到2.4m/s(3σ)。  相似文献   

14.
卫星三轴姿态的确定是对卫星进行姿态控制的基础,利用陀螺和红外敏感器互补的特性,并对测量所得到的数据进行处理,便可得到卫星姿态角的估计值。陀螺和红外地球敏感器是卫星姿态控制系统中关键的测量部件,两者的测量输出通过卫星运动学方程相关,有冗余关系,可以用于故障检测。本文对所设计的观测器进行了数值仿真,证实了其有效性,并直接利用所设计的观测器进行故障检测,首先得出陀螺和红外地球敏感器在各种故障下的输出残差曲线,然后分析陀螺和红外地球敏感器的不同故障对输出残差信号的不同影响,找出各种故障与不同输出残差的对应关系,从而确定发生故障的部件。  相似文献   

15.
The STD 12 infrared horizon scanning sensor is designed for attitude control, with respect to Earth, of three-axis stabilized satellites in low altitude Earth orbits. The operational accuracy is better than 0.1 arc degree.After presenting the attitude measurement performance required for the SPOT platform, the STD 12 concept is described and the results of qualification and life tests are given.  相似文献   

16.
运载火箭姿控系统数学仿真软件设计   总被引:1,自引:0,他引:1  
分析了运载火箭姿控系统箭体动力学运动方程和控制器数学模型特点,并且按照校正网络、执行机构、箭体方程、测量方程顺序设计数学仿真软件。该软件能方便地完成姿控系统数学仿真任务。由于采用三级模块结构设计,该软件具有结构清晰、层次分明、调试简单、功能齐全、使用方便等明显优点。  相似文献   

17.
针对近距离快速绕飞的视线保持要求和姿轨耦合特点,研究航天器姿轨协同最优控制方法。建立了六自由度相对运动耦合非线性模型,偏心推力矢量同时提供位置和姿态控制能力;考虑到近距离相对运动对动态性能的高精度要求,不同于无限时域经典Theta-D方法,提出了一种包含终端状态约束的滚动优化有限时域最优控制快速解算方法,推导了中间过程微分Riccati方程和微分Lyapunov方程的横截条件。控制器设计充分考虑了有限脉冲小推力器和有限力矩输出装置的约束。对近距离快速绕飞的仿真结果说明了方法的有效性,所提方法在保证相对运动稳定和动态性能的前提下控制输出幅值小,具有工程实际意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号