首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为改善星箭界面低频振动环境,采用磁流变阻尼器作为半主动控制元件,设计六杆Stewart隔振平台,替代原有锥壳过渡支架。采用牛顿-欧拉法建立整星隔振平台动力学模型。针对星箭界面低频振动环境在特定频段振动量级较大的特点,采用H_∞控制进行控制器综合,通过选择合适的加权函数,对特定频段振动进行重点衰减。磁流变阻尼器采用双sigmoid模型,并设计新型半主动控制策略,跟踪期望阻尼力。仿真结果表明,相对传统控制方法,H_∞半主动控制在特定频段减振效果较好,且在其他频段控制效果没有恶化,验证了算法的有效性。  相似文献   

2.
基于自适应谐波消除的Hexapod平台微振动激励控制   总被引:1,自引:1,他引:0  
针对空间微振动环境模拟的需求,以Hexapod平台为对象,进行正弦振动激励控制的研究。当Hexapod平台工作在共振频段时,其输出的振动信号中因含有谐波成分而产生了显著的控制误差。为此,提出了一种自适应谐波消除算法。该算法以LMS滤波器为基础,将与谐波同频率的正弦信号和余弦信号作为滤波器的基底信号,将平台实际的输出响应作为滤波器的误差信号,以此实现谐波分量的自适应消除。将基于该算法的控制回路引入传统的控制器,进行了共振频段的单输入单输出和多输入多输出的微振动激励试验,结果表明,该算法可有效地消除谐波失真,大幅提高了Hexapod平台在共振频段的控制精度。  相似文献   

3.
Hexapod微激振平台具有负载重量大和振动量级小的特点,为了实现精确卸载、作动器小量级精密控制,研制了基于空气弹簧支撑的Hexapod微激振平台。该平台包括负责工作状态承载的4点梯形分布的空气弹簧柔性支撑和负责非工作状态承载的3点刚性辅助支撑两部分。针对该平台自动调平控制的两大问题:即柔性支撑与刚性支撑之间存在的力耦合以及气路控制中存在的非线性和时延性,提出了连续充气和脉冲充气相结合的开关控制策略。为验证自动调平控制的可行性,在负载重量约为200 kg的Hexapod微激振平台上进行试验,结果表明,平台可在140 s内实现自动调平,且6个作动腿位移误差不超过1 mm。  相似文献   

4.
面向天文卫星、遥感卫星越来越高的指向精度和稳定度需求,解决指向控制和振动抑制相互制约的矛盾,文章提出了采用同时具备振动隔离和指向调节能力的Stewart平台以实现柔性航天器高精高稳指向的方法。建立了整星柔性动力学模型,设计了主被动一体隔振指向控制器,并基于该模型对传递率进行仿真,验证了理论分析结果。通过数字仿真验证了主被动一体隔振指向平台的振动抑制性能和指向控制性能,结果表明:能同时满足振动隔离和指向调节需求,可为具有高精度指向航天器的发展提供参考。  相似文献   

5.
整星主动隔振平台研究   总被引:3,自引:1,他引:3  
整星隔振是降低作用于卫星的振动载荷的有效方法。在被动隔振的基础上施加主动控制可以提高隔振系统性能,实现全频带隔振。首先介绍了整星隔振技术的发展现状,并根据运载火箭的特殊环境要求确定了整星主动隔振平台方案。然后本文对隔振平台的各种控制方法进行了对比,对平台的冗余和重构问题进行了分析。实验结果表明,与被动隔振相比主动隔振平台有更好的低频隔振性能。  相似文献   

6.
FY-4卫星微振动抑制技术研究   总被引:1,自引:0,他引:1  
根据装载干涉式大气垂直探测仪对微振动抑制的要求,对风云四号(FY-4)卫星的微振动抑制技术进行了研究。通过统计星上振源,规划整星级频谱,研究微振动传播机理,设计了振源隔离和载荷隔振的双级隔振系统。给出了动量轮的隔振设计,将动量轮的安装支架由刚性变为基于六角架(Hexapod)构型的非线性变刚度柔性支架,隔离动量轮传递至卫星平台的振动干扰,从源头控制振动。分析了发射段幅频特性和在轨段隔振性能,结果表明试验结果与理论分析一致。在此基础上,采用隔振组件和解锁组件并联使用方式,实现干涉式大气垂直探测仪的二次隔振设计,以进一步抑制卫星平台传递至探测仪的微振动干扰。地面微振动试验和在轨微振动实测结果表明:隔振系统能使卫星平台传递至载荷安装面的微振动量级控制在0.1×10-3g以下,满足指标要求。FY-4卫星微振动抑制技术可为其他卫星的微振动抑制提供参考。  相似文献   

7.
空间柔性臂的解耦动力学模型及其控制   总被引:1,自引:0,他引:1  
王光庆  郭吉丰 《宇航学报》2004,25(5):580-582,586
提出了一种空间柔性结构通过关节电机同时实现轨迹控制和振动抑制的方法。针对单连杆空间柔性臂,采用非约束模态法建立了刚柔解耦动力学模型;提出了基于应变反馈的PID控制策略,并设计了PID/应变反馈复合控制器,同时实现对柔性臂末端运动轨迹的定位控制和弹性振动抑制控制;仿真结果验证了该控制策略的可行性。  相似文献   

8.
柔性线缆连接的分离式卫星动力学建模   总被引:1,自引:0,他引:1  
基于拉格朗日法建立柔性线缆连接的分离式磁耦合卫星刚柔耦合动力学模型,并基于该模型研究柔性线缆对分离式卫星隔振性能以及指向性能的影响。仿真结果表明,柔性线缆将明显降低分离式卫星对服务模块低频扰动的隔振性能,由于柔性线缆的存在,低频扰动将使载荷模块稳态时的姿态精度和稳定度大幅下降。柔性线缆也会影响载荷模块的指向控制精度,采用相同的PD控制器,有柔性线缆时载荷模块指向稳态误差大于无柔性线缆时载荷模块指向稳态误差4个数量级。柔性线缆对载荷模块性能影响明显,所建动力学模型对提高分离式卫星建模和控制精度有重要意义。  相似文献   

9.
为了研究含有柔性关节的双连杆柔性机械臂的振动控制问题,采用绝对坐标方法对臂杆和关节进行建模,得到了刚柔耦合的双连杆机械臂动力学模型;对比研究了PD和LQR控制方法对柔性机械臂主动控制效果,针对柔性机械臂的实际工程需求,提出了一种LQR-PD联合控制策略,设计了相应的控制器并进行了仿真控制研究,同时结合搭建的双连杆柔性机械臂地面模拟平台进行了模拟实验。研究结果表明,该控制策略不仅能实现关节轨迹的精确跟踪,而且能有效抑制臂杆末端的残余振动,具有重要的工程价值和良好的应用前景。  相似文献   

10.
针对采用两级控制的大型柔性空间机械臂轨迹跟踪与振动抑制问题,文章在对系统频域进行分析的基础上,提出了一种应用滤波的振动抑制方法,即通过降低中央控制器输出信号的频率减少伺服跟踪的动态误差。此方法能够有效提高机械臂末端解析点(POR)的动态跟踪精度,并抑制机械臂振动。文章通过某大型机械臂全柔性系统仿真算例对方法的有效性进行了验证,可为机械臂控制和振动抑制提供借鉴。  相似文献   

11.
徐高楠  黄海  李伟鹏  马炜 《宇航学报》2015,36(4):438-445
研究基于Stewart平台主动基座的挠性结构振动控制。首先,建立含Stewart平台主动基座的柔性梁刚柔耦合动力学模型;随后,在模态空间上分别针对挠性结构的一阶和二阶模态设计由线性扩张状态观测器(LESO)和PD控制器组成的自抗扰控制器(ADRC);最后,基于独立模态控制(IMSC)中的模态滤波器从物理坐标中提取模态坐标,建立振动主动控制实验系统,基于模态空间的自抗扰控制方法完成挠性结构的前两阶模态振动主动控制实验。研究结果表明,利用Stewart平台作为主动基座,采用自抗扰控制方法实现挠性结构的振动抑制是一种高效的振动主动控制方法,在空间振动主动控制领域具有广阔的应用前景。  相似文献   

12.
楚中毅  任善永 《宇航学报》2013,34(6):748-754
在空间探测任务中,为了避免卫星平台剩磁对空间待测信息的干扰影响,需采用轻质的伸杆机构支撑各类探测载荷远离卫星本体,而伸杆的弹性振动不可避免地会耦合作用到卫星本体,从而降低卫星本体的姿态控制精度和稳定度。针对此问题,提出了一种基于伸杆最优指令整形结合本体自适应扰动抑制滤波器的复合振动控制策略,即采用指令整形技术抑制柔性伸杆的弹性振动,同时设计自适应扰动抑制滤波器进一步抵消柔性伸杆残余振动对本体的干扰影响,最后在搭建的半物理仿真实验平台上对控制方法进行了实验验证。结果表明:此方法在有效抑制柔性伸杆残余振动的基础上,通过干扰抵消和抑制的控制策略可显著提高此类航天器的姿态控制精度和稳定度。  相似文献   

13.
雷荣华  陈力 《宇航学报》2020,41(4):472-482
针对关节执行器存在部分失效(PLCE)故障的漂浮基柔性空间机械臂系统,提出一种自适应H∞容错抑振混合控制算法。结合拉格朗日法与弹性振动理论推导出了系统的动力学微分方程,并截取反映柔性臂杆主振型的前两阶模态作振动分析。根据奇异摄动原理对系统进行降维,并将其分解为一个刻画刚性臂杆轨迹跟踪的慢变子系统与一个刻画柔性臂杆模态振动的快变子系统;由此设计了由慢变子系统的自适应H∞容错控制器及快变子系统的线性最优减振控制器组成混合控制器。与传统容错控制器相比,所设计的自适应H∞容错控制器具有无需获取故障先验知识的优点。对比仿真结果表明:慢变子系统的容错控制器对于PLCE型关节执行器故障具备较强的鲁棒性,快变子系统的线性最优减振控制器能够将柔性臂杆的振动模态调节至较低水平,从而校验了理论分析的正确性与混合控制策略的有效性。  相似文献   

14.
王萍萍  刘磊 《宇航学报》2012,33(9):1195-1202
随着大型航天器柔性越来越大,结构越加复杂,导致低频柔性模态密集,但同时需要极高的定向精度及姿态稳定度, 这就对航天器姿态控制系统提出了更高的要求。本文采用拉格朗日法建立了柔性航天器姿态轨道耦合动力学模型,并设计了大角度机动航天器的姿态控制器。Lyapunov定理给出闭环系统的稳定性,在0.03Nm均方根的白噪声扰动下,大角度机动姿态角误差小于0.02°,均方根误差0.003°, 为了抑制姿态抖振,设计了复合控制器,采用Stewart平台对敏感载荷局部高精度主动隔振和定向,局部控制后敏感载荷的定向误差小于0.0001°,均方根误差0.000036°。鲁棒 Η ∞ 控制器对Stewart平台主动镇定时,姿态抖振小于0.000002°,均方根误差小于 0.0000008° ,姿态稳定度优于0.00001°/s。  相似文献   

15.
孙洪雨  张雷  陈善搏  谷松  李季 《宇航学报》2020,41(10):1288-1294
针对光学遥感卫星飞轮微振动引起的成像质量下降问题,设计了一种组合隔振装置,并采用仿真分析与实验测试相结合的方法对隔振方案设计的合理性进行验证。首先,将测量的飞轮扰振数据引入光学卫星的有限元模型中,计算出飞轮扰振对光学相机的像素偏移影响;其次,设计了组合隔振方案并基于有限元方法对其隔振效果进行验证;最后,搭建了光学成像微振动实验测试平台,对不同转速下飞轮微振动造成的像素偏移影响进行精确测量。实验结果表明,组合隔振装置对300 Hz以上高频段飞轮扰振有较大衰减作用,最大像素偏移降到0.01个像素以下,隔振效率达到80%以上;通过对比可知,实验测试与仿真计算得到的像素偏移结果在低频段一次谐波响应及模态响应表现出较好一致性,但在高频段二者存在一定偏差。  相似文献   

16.
为研究微振动对航天器上有效载荷的影响,以Hexapod平台为基础,设计多自由度微激励系统。常规的经典控制算法难以满足Hexapod多自由度微激励系统的精度要求;自适应控制算法虽然对处理此类问题具有天然的优势,但因被控对象相位延迟而引入的稳定条件限制了其在工程上的应用。文章结合线性自抗扰技术,提出了一种扰动补偿自适应控制算法,将被控对象相位滞后特性看作内扰,运用扩张状态观测器与外扰一同进行观测补偿,使系统输出信号与期望信号一致。将该算法应用于Hexapod多自由度微激励系统进行仿真和实验,验证了其可有效复现所需频带高精度正弦微振动信号,显示出实际工程应用价值。  相似文献   

17.
某无人机光电平台隔振设计及试验分析   总被引:1,自引:0,他引:1  
机载光电平台的稳定性和跟踪精度受振动扰动的影响十分敏感,为了提高平台任务载荷的成像品质,需要通过合理的隔振设计对光电平台的振动环境加以改善。文章以某无人机吊舱平台为背景,结合被动隔振理论及被动隔振系统的动力学模型,给出光电平台隔振设计的技术思想及具体的隔振方案,并通过振动试验对隔振设计的效果进行了检验。试验结果表明,隔振系统内部测点的加速度均方根与外部测点的相比减小了60%,说明了隔振设计的减振效力,进而验证了隔振方案的合理性,为更深入的机载隔振系统设计提供了参考依据。  相似文献   

18.
为了解决星上微振动引起的空间摆臂式傅里叶干涉仪(下文简称干涉仪)运动速度稳定度下降的问题,分析了干涉仪在轨减振任务的特点,提出了同时采用低刚度隔振与高灵敏度阻尼抑振的一体化设计方法,实现了干涉仪超静超稳平台的系统设计。平台采用被动隔振技术隔离卫星中、高频的机械振动,实现干涉仪在轨的“静”,采用电磁阻尼技术消除隔振过程引入的低频共振和晃动,保证干涉仪在轨的“稳”。地面微振动试验中,平台引入后,干涉仪安装位置加速度响应满足微振动环境要求,干涉仪性能稳定,载荷工作正常。  相似文献   

19.
作物类型分类是极化合成孔径雷达(PolSAR)图像中最重要的应用之一。然而,由于成本和系统限制,越来越多的双极化SAR系统已经投入使用。由于双极化模式的限制,双极化SAR数据集存在严重的贴现特性,使得双极化SAR图像难以获得令人满意的分类精度,因此有必要提取更适合于双极化SAR数据集的散射特征。基于H/α分解的基本理论,引入了一个新的参数来测量农作物的时变散射特性,并针对双极化SAR图像提出了时变散射特征驱动的卷积神经网络(CNN)。实验结果表明:提出的CNN分类方法达到了最高的分类精度。与不同的特征组合输入相比,提出的新参数能稳定地提高分类器的分类性能,Hαθ和强度特征的组合也能达到最佳的分类性能。  相似文献   

20.
采用多作动器并联隔振平台的整星半主动隔振研究   总被引:1,自引:0,他引:1  
对采用半主动多作动器并联隔振平台的整星隔振实现进行了研究.用牛顿欧拉法建立了由半主动隔振平台和柔性卫星构成的系统的动力学方程,根据主动悬空阻尼器原理设计了半主动隔振平台的控制丰.仿真分析表明:该平台能改善卫星的动力学环境,相对被动隔振平台而言,可克服衰减共振峰值与衰减高频段幅值问的矛盾.相对主动隔振平台而言,系统简单可靠、能量需求小,质量轻.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号