首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 736 毫秒
1.
Based on the experiences made with the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) which was primarily deveoloped for long-term and multi-generation experiments with aquatic animals and plants in a space station highly effective fresh water recycling modules were elaborated utilizing a combination of ammonia oxidizing bacteria filters and higher plants. These exhibit a high effectivity to eliminate phosphate and anorganic nitrogen compounds and arc. in addidition. able to contribute to the oxygen supply of the aquatic animals. The C.E.B.A.S. filter system is able to keep a closed artificial aquatic ecosystem containing teleost fishes and water snails biologically stable for several month and to eliminate waste products deriving from degraded dead fishes without a decrease of the oxygen concentration down to less than 3.5 mg/l at 25 °C. More advanced C.E.B.A.S. filter systems, the BIOCURE filters, were also developed for utilization in semiintensive and intensive aquaculture systems for fishes. In fact such combined animal-plant aquaculture systems represent highly effective productions sites for human food if proper plant and fish species are selected The present papers elucidates ways to novel aquaculture systems in which herbivorous fishes are raised by feeding them with plant biomass produced in the BIOCURE filters and presents the scheme of a modification which utilizes a plant species suitable also for human nutrition. Special attention is paid to the benefits of closed aquaculture system modules which may be integrated into bioregenerative life support systems of a higher complexity for, e. g.. lunar or planetary bases including some psychologiccal aspects of the introduction of animal protein production into plant-based life support systems. Moreover, the basic reproductive biological problems of aquatic animal breeding under reduced gravity are explained leading to a disposition of essential research programs in this context.  相似文献   

2.
Bluem V  Paris F 《Acta Astronautica》2001,48(5-12):287-297
Most concepts for bioregenerative life support systems are based on edible higher land plants which create some problems with growth and seed generation under space conditions. Animal protein production is mostly neglected because of the tremendous waste management problems with tetrapods under reduced weightlessness. Therefore, the "Closed Equilibrated Biological Aquatic System" (C.E.B.A.S.) was developed which represents an artificial aquatic ecosystem containing aquatic organisms which are adapted at all to "near weightlessness conditions" (fishes Xiphophorus helleri, water snails Biomphalaria glabrata, ammonia oxidizing bacteria and the rootless non-gravitropic edible water plant Ceratophyllum demersum). Basically the C.E.B.A.S. consists of 4 subsystems: a ZOOLOGICAL (correction of ZOOLOGICASL) COMPONENT (animal aquarium), a BOTANICAL COMPONENT (aquatic plant bioreactor), a MICROBIAL COMPONENT (bacteria filter) and an ELECTRONICAL COMPONENT (data acquisition and control unit). Superficially, the function principle appears simple: the plants convert light energy into chemical energy via photosynthesis thus producing biomass and oxygen. The animals and microorganisms use the oxygen for respiration and produce the carbon dioxide which is essential for plant photosynthesis. The ammonia ions excreted by the animals are converted by the bacteria to nitrite and then to nitrate ions which serve as a nitrogen source for the plants. Other essential ions derive from biological degradation of animal waste products and dead organic matter. The C.E.B.A.S. exists in 2 basic versions: the original C.E.B.A.S. with a volume of 150 liters and a self-sustaining standing time of more than 13 month and the so-called C.E.B.A.S. MINI MODULE with a volume of about 8.5 liters. In the latter there is no closed food loop by reasons of available space so that animal food has to be provided via an automated feeder. This device was flown already successfully on the STS-89 and STS-90 spaceshuttle missions and the working hypothesis was verified that aquatic organisms are nearly not affected at all by space conditions, i.e. that the plants exhibited biomass production rates identical to the sound controls and that as well the reproductive, and the immune system as the embryonic and ontogenic development of the animals remained undisturbed. Currently the C.E.B.A.S. MINI MODLULE is prepared for a third spaceshuttle flight (STS-107) in spring 2001. Based on the results of the space experiments a series of prototypes of aquatic food production modules for the implementation into BLSS were developed. This paper describes the scientific disposition of the STS-107 experiment and of open and closed aquaculture systems based on another aquatic plant species, the Lemnacean Wolffia arrhiza which is cultured as a vegetable in Southeastern Asia. This plant can be grown in suspension culture and several special bioreactors were developed for this purpose. W. arrhiza reproduces mainly vegetatively by buds but also sexually from time to time and is therefore especially suitable for genetic engineering, too. Therefore it was used, in addition, to optimize the C.E.B.A.S. MINI MODULE to allow experiments with a duration of 4 month in the International Space Station the basic principle of which will be explained. In the context of aquaculture systems for BLSS the continuous replacement of removed fish biomass is an essential demand. Although fish reproduction seems not to be affected in the shortterm space experiments with the C.E.B.A.S. MINI MODULE a functional and reliable hatchery for the production of siblings under reduced weightlessness is connected with some serious problems. Therefore an automated "reproduction module" for the herbivorous fish Tilapia rendalli was developed as a laboratory prototype. It is concluded that aquatic modules of different degrees of complexity can optimize the productivity of BLSS based on higher land plants and that they offer an unique opportunity for the production of animal protein in lunar or planetary bases.  相似文献   

3.
Most concepts for bioregenerative life support systems are based on edible higher land plants which create some problems with growth and seed generation under space conditions. Animal protein production is mostly neglected because of the tremendous waste management problems with tetrapods under reduced weightlessness. Therefore, the “Closed Equilibrated Biological Aquatic System” (C.E.B.A.S.) was developed which represents an artificial aquatic ecosystem containing aquatic organisms which are adpated at all to “near weightlessness conditions” (fishes Xiphophorus helleri, water snails Biomphalaria glabrata, ammonia oxidizing bacteria and the rootless non-gravitropic edible water plant Ceratophyllum demersum). Basically the C.E.B.A.S. consists of 4 subsystems: a ZOOLOGICASL COMPONENT (animal aquarium), a BOTANICAL COMPONENT (aquatic plant bioreactor), a MICROBIAL COMPONENT (bacteria filter) and an ELECTRONICAL COMPONENT (data acquisition and control unit). Superficially, the function principle appears simple: the plants convert light energy into chemical energy via photosynthesis thus producing biomass and oxygen. The animals and microorganisms use the oxygen for respiration and produce the carbon dioxide which is essential for plant photosynthesis. The ammonia ions excreted by the animals are converted by the bacteria to nitrite and then to nitrate ions which serve as a nitrogen source for the plants. Other essential ions derive from biological degradation of animal waste products and dead organic matter. The C.E.B.A.S. exists in 2 basic versions: the original C.E.B.A.S. with a volume of 150 liters and a self-sustaining standing time of more than 13 month and the so-called C.E.B.A.S. MINI MODULE with a volume of about 8.5 liters. In the latter there is no closed food loop by reasons of available space so that animal food has to be provided via an automated feeder. This device was flown already successfully on the STS-89 and STS-90 spaceshuttle missions and the working hypothesis was verified that aquatic organisms are nearly not affected at all by space conditions, i . e. that the plants exhibited biomass production rates identical to the ground controls and that as well the reproductive, and the immune system as the the embryonic and ontogenic development of the animals remained undisturbed. Currently the C.E.B.A.S. MINI MODLULE is prepared for a third spaceshuttle fligt (STS-107) in spring 2001. Based on the results of the space experiments a series of prototypes of aquatic food production modules for the implementation into BLSS were developed. This paper describes the scientific disposition of the STS-107 experiments and of open and closed aquaculture systems based on another aquatic plant species, the Lemnacean Wolffia arrhiza which is cultured as a vegetable in Southeastern Asia. This plant can be grown in suspension culture and several special bioreactors were developed for this purpose. W. arrhiza reproduces mainly vegetatively by buds but also sexually from time to time and is therefore especially suitable for genetic engineering, too. Therefore it was used, in addition, to optimize the C.E.B.A.S. MINI MODULE to allow experiments with a duration of 4 month in the International Space Station the basic principle of which will be explained. In the context of aquaculture systems for BLSS the continuous replacement of removed fish biomass is an essential demand. Although fish reproduction seems not to be affected in the short-term space experiments with the C.E.B.A.S. MIMI MODULE a functional and reliable hatchery for the production of siblings under reduced weightlessness is connected with some serious problems. Therefore an automated “reproduction module” for the herbivorous fish Tilapia rendalli was developed as a laboratory prototype. It is concluded that aquatic modules of different degrees of complexity can optimize the productivity of BLSS based on higher land plants and that they offer an unique opportunity for the production of animal protein in lunar or planetary bases.  相似文献   

4.
Based on the construction principle of the Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) two novel combined animal-plant production systems were developed in laboratory scale the first of which is dedicated to mid-term operation in closed state up to two years. In principle both consist of the "classic" C.E.B.A.S. subcomponents: animal tank (Zoological Component), plant cultivators (Botanical Component), ammonia converting bacteria filter (Microbial Component) and data acquisition/control unit (Electronical Component). The innovative approach in the first system is the utilization of minimally three aquatic plant cultivators for different species. In this one the animal tank has a volume of about 160 liters and is constructed as an "endless-way system" surrounding a central unit containing the heat exchanger and the bacteria filter with volumes of about 1.5 liters each. A suspension plant cultivator (1 liter) for the edible duckweed Wolffia arrhiza is externally connected. The second plant cultivator is a meandric microalgal bioreactor for filamentous green algae. The third plant growth facility is a chamber with about 2.5 liters volume for cultivation of the "traditional" C.E.B.A.S. plant species, the rootless buoyant Ceratophyllum demersum. Both latter units are illuminated with 9 W fluorescent lamps. In the current experiment the animal tank contains the live-bearing teleost fish Xiphophorus helleri and the small pulmonate water snail Biomphalaria glabrata because their physiological adaptation to the closed system conditions is well known from many previous C.E.B.A.S. experiments. The water temperature is maintained at 25 degrees C and the oxygen level is regulated between 4 and 7 mg/l by switching on and off the plant cultivator illuminations according to a suitable pattern thus utilizing solely the oxygen produced by photosynthesis. The animals and the microorganisms of filter and biofilm provide the plants with a sufficient amount of carbon dioxide. Oxygen concentration, pH value, temperature and redox potential are on-line recorded. Ion concentrations and numbers of living germs in the system water are determined twice monthly in the laboratory from samples taken from a special "sample removal module"; the sample volume is automatically replaced from an reservoir container. A rotatory pump produces a water flow of about 38 l/min. For a similar smaller test system with approx. 10 l volume developed from the C.E.B.A.S.-MINI-MODULE a novel indirect solar energy supply is tested which has a buffer capacity to maintain the system for 7 days in darkness under central European climate conditions also in winter. It contains only a single plant cultivator which is operated with Wollfia arrhiza. This lemnacean plant is able to produce large amounts of plant biomass in a short time by vegetative reproduction via daughter fronds. This easy-to-handle apparatus is dedicated to be operative more than 4 month. The experimental animals and microorganisms are the same as in the large system. The paper provides detailed information on the system construction principles and the biological, physical and chemical data of the initial phase of the test runs of both systems with the main focus on the large one.  相似文献   

5.
6.
Understanding how hypobaria can affect net photosynthetic (P (net)) and net evapotranspiration rates of plants is important for the Mars Exploration Program because low-pressured environments may be used to reduce the equivalent system mass of near-term plant biology experiments on landers or future bioregenerative advanced life support systems. Furthermore, introductions of plants to the surface of a partially terraformed Mars will be constrained by the limits of sustainable growth and reproduction of plants to hypobaric conditions. To explore the effects of hypobaria on plant physiology, a low-pressure growth chamber (LPGC) was constructed that maintained hypobaric environments capable of supporting short-term plant physiological studies. Experiments were conducted on Arabidopsis thaliana maintained in the LPGC with total atmospheric pressures set at 101 (Earth sea-level control), 75, 50, 25 or 10 kPa. Plants were grown in a separate incubator at 101 kPa for 6 weeks, transferred to the LPGC, and acclimated to low-pressure atmospheres for either 1 or 16 h. After 1 or 16 h of acclimation, CO(2) levels were allowed to drawdown from 0.1 kPa to CO(2) compensation points to assess P (net) rates under different hypobaric conditions. Results showed that P (net) increased as the pressures decreased from 101 to 10 kPa when CO(2) partial pressure (pp) values were below 0.04 kPa (i.e., when ppCO2 was considered limiting). In contrast, when ppCO(2) was in the nonlimiting range from 0.10 to 0.07 kPa, the P (net) rates were insensitive to decreasing pressures. Thus, if CO(2 )concentrations can be kept elevated in hypobaric plant growth modules or on the surface of a partially terraformed Mars, P (net) rates may be relatively unaffected by hypobaria. Results support the conclusions that (i) hypobaric plant growth modules might be operated around 10 kPa without undue inhibition of photosynthesis and (ii) terraforming efforts on Mars might require a surface pressure of at least 10 kPa (100 mb) for normal growth of deployed plant species.  相似文献   

7.
Following an enthusiastic start in 1985, ESA's life support technology development programme was re-assessed in the mid- to late-1990s to reflect the strong reduction in European manned space ambitions which occurred at that time. Further development was essentially restricted to activities that could constitute ISS upgrades or enhancements, or support ISS utilisation/operations, together with a single, limited, activity (MELISSA) aimed at bioregenerative life support, in the continuing hope that there might be "life after Station". The paper describes the current status of these activities and summarises the main priorities for future development that were identified at the April 1999 Workshop on Advanced Life Support.  相似文献   

8.
文章通过对航天器总装管理现状的分析,介绍了看板生产管理系统的设计:该系统将指令性卡片与物料卡片相结合,属于MRP管理模式;确定以B/S和C/S模式相结合、标准J2EE结构和Oracle 9i数据库平台的技术途径;由4个层面构建总装管理平台;总的系统框架由7个子模块组成.该系统的研制可实现总装工作中计划、技术、生产、管理信息的有机结合,并能有效地提高工作效率.  相似文献   

9.
文章从标准化的角度讨论了动力学环境试验技术,分析了以MIL-STD-810为代表的各类产品通用的环境标准和以NASA-HDBK-7005为代表的航天系统动力学环境标准所形成的两个环境标准体系的特点,讨论了NASA-HDBK-7005的标准内容,提出了我国航天动力学环境标准化工作的建议和意见。  相似文献   

10.
Space Biospheres Ventures is developing technologies for its Biosphere 2 project — a 3 acre materially closed ecological system with human habitat, intensive agriculture and five wilderness biomes — and other life-support testbeds for space habitats in microgravity and the Moon and Mars, as well as for ecological research pertinent to the biosphere of Earth. These include soil bed reactors for air purification and biomass production; aquatic waste processing systems; real-time analytic systems; and computer systems of control and management. A space policy pursuing joint Earth and ‘space biospheres’ objectives and implications is discussed.  相似文献   

11.
A steady state chemical model and computer program have been developed for a life support system and applied to trade-off studies. The model is based on human demand for food and oxygen determined from crew metabolic needs. The model includes modules for water recycle, waste treatment, CO2 removal and treatment, and food production. The computer program calculates rates of use and material balance for food. O2, the recycle of human waste and trash, H2O, N2, and food production supply. A simple non-iterative solution for the model has been developed using the steady state rate equations for the chemical reactions. The model and program have been used in system sizing and subsystem trade-off studies of a partially closed life support system.  相似文献   

12.
一种深空探测器电源共用的方法   总被引:1,自引:0,他引:1  
针对深空探测器重量约束苛刻的特点,提出了一种适合探测器A和B组合体的电源共用方法,充分利用探测器A和B电源控制器原有的功率模块,设计电源共用电路和一套逻辑控制指令,通过两器间的电接口实现电源共用,并对该方法的技术先进性进行了详细分析,可为深空探测器电源系统设计提供参考。  相似文献   

13.
In vitro edible muscle protein production system (MPPS): stage 1, fish   总被引:1,自引:0,他引:1  
The working efficiency and state-of-mind of a Space vehicle crew on long-term missions is dependent on the suitability of living conditions including food. Our purpose was to establish the feasibility of an in vitro muscle protein production system (MPPS) for the fabrication of surrogate muscle protein constructs as food products for Space travelers. In the experimental treatments, we cultivated the adult dorsal abdominal skeletal muscle mass of Carassius (Gold fish). An ATCC fish fibroblast cell line was used for tissue engineering investigations. No antibiotics were used during any phase of the research. Our four treatments produced these results: a low contamination rate, self-healing, cell proliferation, a tissue engineered construct of non-homologous co-cultured cells with explants, an increase in tissue size in homologous co-cultures of explants with crude cell mixtures, maintenance of explants in media containing fetal bovine serum substitutes, and harvested explants which resembled fresh fish filets.

We feel that not only have we pointed the way to an innovative, viable means of supplying safe, healthy, nutritious food to Space voyagers on long journeys, but our research also points the way to means of alleviating food supply and safety problems in both the public and private sectors worldwide.  相似文献   


14.
Considerable progress has been made in recent years on development of candidate physico-chemical components for use in regenerative life support systems (LSS) for future extended-duration-mission spacecraft; these life support systems provide air revitalization including carbon dioxide reduction, water reclamation, and limited waste management. For still longer duration manned space flights, such as a permanently inhabited space station, it is generally recognized that development of biological life support systems capable of generating food and regenerating wastes will be essential to reduce logistics costs.  相似文献   

15.
The effect of climber transit on the space elevator dynamics   总被引:1,自引:0,他引:1  
The space elevator offers an alternate and efficient method for space travel. It will have two main components. The first component is the tether (or the ribbon), which extends from the Earth to an equatorial satellite at an altitude beyond the geostationary orbit, and is fixed to a base on the surface of the Earth at its lower end. The second component is the climber, which scales the ribbon, transporting payloads to space. An important issue for effective operation of the space elevator will be to understand its dynamics. This paper attempts to develop a realistic and yet simple planar model for this purpose. The basic response of the ribbon to climber transit is determined. Both analytical and numerical results are presented. Specific climbing procedures are devised based on these results so as to minimize the adverse effects of climber transit on the ribbon.  相似文献   

16.
Space light: space industrial enhancement of the solar option   总被引:1,自引:0,他引:1  
The solar option can be enhanced significantly by space light technology. Reflectors in suitable orbits beam to Earth measured amounts of sunlight, the most versatile and bio-compatible energy source. The multitude of space light functions ranges from night illumination of rural and urban areas (by Lunetta systems) to photosynthetic production enhancement for the growth of food and of biomass for conversion to chemical fuels, local agricultural irradiation for crop drying and weather stabilization and to electric power generation by irradiating suitable photovoltaic or thermal ground receivers at night or by adding to the natural solar energy input during daytime (Soletta systems).

The Lunetta and Soletta concepts, developed by the author during the past ten years, building on the foundations laid by the great space pioneer Prof. H. Oberth (1928), are reviewed, along with their socio-economic merits. An assessment of terrestrial alternatives shows that many useful functions have no practical alternative, the major exception being electric power generation. Three systems are selected, bracketing the broad versatility of space light—Lunetta, Powersoletta and a large Biosoletta for large-scale seafood production in Antarctic and Artic waters. The systems, and several maintenance and supply requirements are described, sized and analyzed, along with suitable orbit selection for different applications. Models are developed for rural and urban area lighting, power generation at selected sites around the globe with photovoltaic and thermal ground stations and for the large-scale production of seafood at high southern and northern latitudes with ample nutrient upwell, but insufficient annual supply of solar energy. The economics of these systems is analyzed.  相似文献   


17.
Space solar power (SSP) has been broadly defined as the collection of solar energy in space and its wireless transmission for use on earth. This approach potentially gives the benefit of provision of baseload power while avoiding the losses due to the day/night cycle and tropospheric effects that are associated with terrestrial solar power. Proponents have contended that the implementation of such systems could offer energy security, environmental, and technological advantages to those who would undertake their development. Among recent implementations commonly proposed for SSP, the modular symmetrical concentrator (MSC) and other modular concepts have received considerable attention. Each employs an array of modules for performing conversion of concentrated sunlight into microwaves or laser beams for transmission to earth. While prototypes of such modules have been designed and developed previously by several groups, none have been subjected to the challenging conditions inherent to the space environment and the possible solar concentration levels in which an array of modules might be required to operate. The research described herein details our team's efforts in the development of photovoltaic arrays, power electronics, microwave conversion electronics, and antennas for microwave-based “sandwich” module prototypes. The implementation status and testing results of the prototypes are reviewed.  相似文献   

18.
Eureca, the European Retrieval Carrier, is a reusable free-flying platform, which will be launched to 500 km altitude and retrieved by the Shuttle. up to 6 months later at 300 km. The first mission of Eureca is dedicated to research in the fields of life sciences and material sciences. The experimental hardware of the first mission will consist of a variety of processing chambers for crystal growth and equipment for biological investigations viz plant growth and protein crystallization, and there is the possibility to perform experiments in the field of exobiology. The Eureca mission offers the opportunity for long time exposure of material and of terrestrial origin to the unique environment of space or to selected factors of it, such as the radiation environment, the space vacuum, extreme temperatures and microgravity conditions.  相似文献   

19.
While most studies on space power systems target electricity generation as the energy product, industrialized nations also have a need for chemicals to support transportation and other purposes. This paper therefore describes an alternative target for the application of space power systems: the production of chemical fuels based on radiant energy beamed or reflected from orbiting platforms. If cost and efficiency targets can be achieved, Solar Thermochemical Plants—occupying a few square kilometers each—can potentially generate substantial quantities of transportation fuels, therefore enabling reductions in the consumption of petroleum and the emission of carbon dioxide. The specifics of the approach that are described in this paper include the concentration of radiant energy within ground-based systems so that high temperature heat is provided for thermochemical process networks. This scoping study includes the evaluation of various feedstock chemicals as input to the Solar Thermochemical Plant: natural gas, biomass and zero-energy chemicals (water and carbon dioxide); and the production of either hydrogen or long-chain hydrocarbons (i.e., Fischer–Tropsch fuels) as the Solar Fuel product of the plant.  相似文献   

20.
Life support components are evaluated for application to an idealized closed life support system which includes an algal reactor for food production. Weight-based trade studies are reported as "break-even" time for replacing food stores with a regenerative bioreactor. It is concluded that closure of the life support gases (oxygen recovery) depends on the carbon dioxide reduction chemistry and that an algae-based food production can provide an attractive alternative to re-supply for longer duration missions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号