首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
针对遥感微纳卫星对地高速数传需求,开展面向微纳卫星的激光数传技术研究,突破微纳卫星激光通信终端星地快速捕获建链和协同高精度稳定跟踪、天基终端轻小型化、复合光电组件等关键技术。完成微纳卫星的天基激光终端和地面激光终端研制,并开展星地传输试验验证,实现 1 230 km、10/50/100 Mbps 的星地数据传输,验证了相关技术,为后续我国微纳卫星对地遥感应用提供了理想的星地数传手段。  相似文献   

2.
Predictions of rain rate and rain attenuation are the most vital steps when analyzing a satellite link operating at frequencies above 10 GHz. Rain attenuation at 12.594 GHz over a satellite path link was measured for the period of 3 years (i.e. January 2002 to December 2004) at Bangkok (13.7°N, 100.7°E). In this paper, a comparison between the current methodologies available to model the impact of rain in earth-space propagation and a dataset of 3 years of rain accumulation with a sampling period of 1 min is made.  相似文献   

3.
Bi-directional ground-to-satellite laser communication experiments were successfully performed between the optical ground station developed by the National Institute of Information and Communications Technology (NICT), located in Koganei City in suburban Tokyo, and a low earth orbit (LEO) satellite, the “Kirari” Optical Inter-orbit Communications Engineering Test Satellite (OICETS). The experiments were conducted in cooperation with the Japan Aerospace Exploration Agency (JAXA), and called the Kirari Optical communication Demonstration Experiments with the NICT optical ground station (or KODEN). The ground-to-OICETS laser communication experiment was the first in-orbit demonstration involving the LEO satellite. The laser communication experiment was conducted since March 2006. The polarization characteristics of an artificial laser source in space, such as Stokes parameters, and the degree of polarization were measured through space-to-ground atmospheric transmission paths, which results contribute to the link estimation for quantum key distribution via space and provide the potential for enhancements in quantum cryptography on a global scale in the future. The Phase-5 experiment, international laser communications experiments were also successfully conducted with four optical ground stations located in the United States, Spain, Germany, and Japan from April 2009 to September 2009. The purpose of the Phase-5 experiment was to establish OICETS-to-ground laser communication links from the different optical ground stations and the statistical analyses such as the normalized power, scintillation index, probability density function, auto-covariance function, and power spectral density were performed. Thus the applicability of the satellite laser communications was demonstrated, aiming not only for geostationary earth orbit-LEO links but also for ground-to-LEO optical links. This paper presents the results of the KODEN experiments and mainly introduces the common analyses among the different optical ground stations.  相似文献   

4.
Due to the increasing demand in satellite capacity, driven by applications such as high-definition television (HDTV), 3D-TV and interactive broadband services, higher frequency bands will have to be exploited. The capacity on Ku-band is already becoming scarce and Ka-band systems are more commonly used. It can be expected that 40 and 50 GHz (Q and V band) will have to be used in the future. At these frequencies the wave propagation effects have a significant impact on the performance. The traditional approach of implementing large fade margins in the system design is not suitable as it leads to expensive ground terminals. Fade mitigation by adaptive coding and modulation (ACM) is a cost-efficient method. To investigate the Q/V-band for future commercial exploitation, ESA's ALPHASAT satellite will provide experimental payloads for communications and wave propagation experiments. In Graz a Q/V-band ground station is currently under development. It will be equipped with a 3 m tracking antenna, a 50 W Klystron amplifier and a 290 K LNA. Fade mitigation experiments will be conducted, initially using DVB-S2 modems which allow to vary the modulation scheme, the Forward Error Correction code and the symbol rate under control of the ACM computer. In addition, uplink power control can be combined with the ACM methods. A specially developed signal analyser provides precise measurement of the signal/noise ratio. In addition, propagation data will be available from a beacon receiver, also developed by Joanneum Research. Important goals of the experiment are to investigate the reliability of links under realistic operating conditions using ACM and to develop efficient ACM and signal/noise ratio measurement algorithms which can be later implemented in optimised modems for Q/V-band.The paper describes the ground station design and addresses the planned fade mitigation experiments.  相似文献   

5.
In this paper we calculate the effect of atmospheric dust on the orbital elements of a satellite. Dust storms that originate in the Martian surface may evolve into global storms in the atmosphere that can last for months can affect low orbiter and lander missions. We model the dust as a velocity-square depended drag force acting on a satellite and we derive an appropriate disturbing function that accounts for the effect of dust on the orbit, using a Lagrangean formulation. A first-order perturbation solution of Lagrange's planetary equations of motion indicates that for a local dust storm cloud that has a possible density of 8.323×10−10 kg m−3 at an altitude of 100 km affects the orbital semimajor axis of a 1000 kg satellite up −0.142 m day−1. Regional dust storms of the same density may affect the semimajor axis up to of −0.418 m day−1. Other orbital elements are also affected but to a lesser extent.  相似文献   

6.
The article deals with the results of the fading fluctuations analysis for telemetry signals in the 2 m and 70 cm bands from the first Moscow State University microsatellite better known as “Universitetsky”. Radio telemetry signals were received from the microsatellite for around 2 years, collecting and recording the power signal data of almost 7500 satellite overpasses. The received signals from about 2300 satellite overpasses had a very low signal to noise ratio (SNR) that caused high transmission losses. The rest of the signals had a SNR high enough to complete the transmission without losses. The main objective of this paper was to find the fading fluctuations caused both by diffusion and by the presence of Gaussian and non Gaussian noise in telemetry signal power data. The purpose was both to characterize the communication channel as well as to elaborate solutions both to improve the communication quality as well as to identify no homogeneous zones in the ionosphere environment. The signal power analysis was based in the observation of statistical characteristics from different power signal components, in particular the components influenced by diffusion and non Gaussian noise. The employed methodology follows the next steps: removing the power signal envelope; taking away the Gaussian noise; obtaining the statistical characteristics from non Gaussian noise, Gaussian noise and envelope; finally identifying the LOS and NLOS signal fading components. For this purpose, the wavelet technique was used to perform the signal decomposition. In particular, the discrete wavelet transform DWT was utilized to carry out the signal de-noising. Then, the results were statistically treated in order to obtain a diffusion index for Rician fading, which are associated with fading in atmosphere and ionosphere layers. In this way the communications channel among satellite and ground station was characterized and a BER parameter was obtained for every satellite overpass, which means an outstanding result when considering that just few papers describe such results for satellite systems. The obtained results are valid not only for satellite communications systems but also for wireless communications systems. These results are the basis for future communications system design, which in our case pursues to reduce the BER parameter in the satellite link. The referred system will employ adaptive error coding schemes as well as channel analyzer algorithms based in the theory exposed in this paper.  相似文献   

7.
《Acta Astronautica》2013,82(2):404-410
Sumbandila (SO-67) is an 81 kg LEO satellite launched on 17 September 2009. Its primary payload is a multi-spectral imager with a ground sampling distance of 6.25 m at an orbit altitude of 500 km. Its two command transceivers operate in the commercial and amateur radio VHF and UHF bands and one of them provides a VHF to UHF repeater service to radio amateurs. This paper presents initial results of a global three week monitoring period of two VHF frequency ranges. The data is obtained by executing on-board flight control procedures to select the frequencies to measure. The existing on-board telemetry gathering system is employed to record the data, most notably the received signal strength for the selected frequency. The data is downloaded using an adaptation of the imagery data download path. We determine regions of high signal levels by distributing individual measurements over cells in the satellite footprint before averaging over the cells. The data is then plotted on a geographical signal strength heatmap. We compare our results with that of a similar study of the late 1990s and point out changes since then. The data provides useful information for selecting future ground station locations for minimum interference. It further gives an indication of frequencies to use for command and telemetry communication at existing ground stations. We propose that including a receiver capable of measuring frequency interference across a desired frequency range is very useful to future missions for selecting communication frequencies from this range for ground station locations.  相似文献   

8.
Advantages of communications satellites are the inherent broadcast capability, high bandwidth, reliability and flexibility in network expansion. Small transportable terminals can be made operational very quickly. Recent developments in communications and computer technology allow to provide low-cost equipment, which is affordable even in developing countries. Communications satellites can also play an important role in case of emergencies or natural disasters. The combination of satellite communications and navigation can support new services for emergency teams.

At the Institute of Applied Systems Technology and the Institute of Communication Networks and Satellite Communications highly transportable terminals have been developed, both for star and mesh network topologies. A fully meshed VSAT system is used for symmetrical links. For other applications, which do not require high return link capacity an asymmetrical system is an efficient solution. It uses low-cost DVB technology for the forward link and satellite phones with data capability on the return link. Novel multicast protocols allow to use these asymmetrical links in an efficient way. The paper describes the different systems and their applications in disaster management and security applications. Emphasis is put on transfer of remote sensing images and voice over IP (VoIP) as well as videoconference services.  相似文献   


9.
On 11 March 2011, an undersea earthquake of magnitude 9.0, the largest ever recorded in Japan, occurred off the Oshika Peninsula on the Pacific coast of the Tohoku region. The hypocentral region extended for 500 km in the north–south direction from Iwate Prefecture to Ibaraki Prefecture, and for 200 km in east–west direction. The earthquake generated a tsunami with a height of more than 10 m and a run-up height of up to 40.0 m in certain places, which inflicted devastating damage on the coastal areas of the Tohoku and Kanto regions. In addition to the tsunami, the earthquake caused shaking, liquefaction, subsidence, and the collapse of dams, causing major damage to vast areas in the Tohoku and Kanto regions and disrupting various types of infrastructure, including communication. In light of this unprecedented damage, satellite communications were important from various perspectives while terrestrial communications systems were damaged, and an objective evaluation of the role played by satellite communications is relevant to its future installation, adoption and use as a standalone or backup system. Furthermore, satellite communications can help reduce the extent of damage, particularly damage to communications systems, inflicted by strong earthquakes in the future. Accordingly, we report a preliminary quantitative evaluation of the role of satellite communications in the Great East Japan Earthquake, of the role of satellite communications if it becomes widespread, and of its expected role in future large-scale earthquakes in terms of the economic effect converted into cost.  相似文献   

10.
The Hayabusa sample return capsule, which contained asteroid samples, re-entered the Earth's atmosphere on June 13, 2010. An ablative carbon-phenolic thermal protection system (TPS) was used to enable a safe return for the small capsule and the containing samples. Besides a research aircraft operated by NASA with a wide range of imaging and spectrographic cameras for remote sensing of the radiation of the Hayabusa capsule during its entry flight, observation from ground based stations has been realized. We participated in the ground based observation campaign with two instruments for spectroscopic and photometric measurements aiming to detect the surface temperature and the plasma radiation in front of the re-entering capsule. The system consists in an infrared camera and a wide range miniature fibre spectrometer. The paper presents the setup, the laboratory calibration procedure, and correction for transmission. The surface temperature of the capsule reached a peak of 3250 K when the capsule was at an altitude of 55.95 km. The thermographic camera measures independently slightly higher temperature at peak heating (3308 K).  相似文献   

11.
《Acta Astronautica》2010,66(11-12):1765-1771
The ESA SWARM mission will consist of three satellites that will measure the Earth magnetic field. The system calls for metre accuracy knowledge of the measurement locations. To achieve this a GPS receiver is used. At least four GPS signals are tracked to determine the code and carrier ranges, from which the position can be derived. The accuracy improves when using more GPS satellites and by averaging over many measurements. The latter is achieved in ground processing with a model-based orbit prediction, resulting in cm accuracy. The main error contributions in the processing are often measurement errors due to satellite multi-path effects. The multipath effects are characterized by measuring the antenna on a 1.5 m mock-up, representing the 9 m long satellite. In order to verify that the mock-up is representative, extensive electromagnetic simulations were made. The simulations included the antenna and the complete satellite and were then reduced to the antenna and a section of the satellite. The actual design of the antenna was performed with several levels of software. First, a fast bodies-of-revolution simulation found a geometry with the right coverage. Then, a finite element method simulation allowed us to match the antenna at two frequencies simultaneously.  相似文献   

12.
与射频通信相比,空间激光通信具有传输速率高、保密性能强、终端功耗低等优点,目前已成为当前通信领域的一个研究热点。同时,空间激光通信也面临着一些严峻的技术挑战,如大气湍流导致空间激光通信的信道情况十分复杂,复杂的信道会引发信号光强度起伏剧烈,信标光跟踪与瞄准困难,接收端的信号光场波前畸变严重等。为了提升空间激光通信在复杂信道环境中的性能,学者们将深度学习技术引入到空间激光通信系统中。多项研究表明,深度学习在空间激光通信的诸多方面表现出了优越的信息处理能力。对近年来深度学习技术在空间激光通信信号处理与检测,信标光捕获与跟踪以及波前畸变探测与校正等方面的应用做一全面梳理,并对用于空间激光通信的深度学习技术的前景进行展望。  相似文献   

13.
《Acta Astronautica》2013,82(2):635-644
The Inner Formation Flying System (IFFS) consisting of an outer satellite and an inner satellite which is a solid sphere proof mass freely flying in the shield cavity can construct a pure gravity orbit to precisely measure the earth gravity field. The gravitational attraction on the inner satellite due to the outer satellite is a significant disturbance source to the pure gravity orbit and is required to be limited to 10−11 m s−2 order. However, the gravitational disturbance force was on 10−9 m s−2 order actually and must be reduced by dedicated compensation mass blocks. The region of relative motion of the inner satellite about its nominal position is within 1 cm in dimension, which raises the complexity of the compensation blocks design. The iterative design strategy of the compensation blocks based on reducing the gravitational attraction at the nominal position of the inner satellite is presented, aiming to guarantee the gravitational force in the relative motion region within requirements after the compensation. The compensation blocks are designed according to the current status of IFFS, and the gravitational disturbance force in the region is reduced to 10−11 ms−2 order with minimized adding mass.  相似文献   

14.
The mission complexity of Nanosatellites has increased tremendously in recent years, but their mission range is limited due to the lack of an active orbit control or ∆v capability. Pulsed Plasma Thrusters (PPT), featuring structural simplicity and very low power consumption are a prime candidate for such applications. However, the required miniaturization of standard PPTs and the adaption to the low power consumption is not straightforward. Most investigated systems have failed to show the required lifetime. The present coaxial design has shown a lifetime of up to 1 million discharges at discharge energies of 1.8 J in previous studies. The present paper focuses on performance characterizations of this design. For this purpose direct thrust measurements with a µN thrust balance were conducted. Thrust measurements in conjunction with mass bit determination allowed a comprehensive assessment. Based on those measurements the present µPPT has a total impulses capability of approximately I≈1.7 Ns, an average mass bit of 0.37 µg s−1 and an average specific impulse of Isp≈904 s. All tests have shown very good EM compatibility of the PPT with the electronics of the flight-like printed circuit board. Consequently, a complete µPPT unit can provide a ∆v change of 5.1 m/s or 2.6 m/s to a standard 1-unit or 2-unit CubeSat respectively.  相似文献   

15.
文章介绍了激光通信、太赫兹通信和量子通信等新的通信频段及通信体制在天基信息传输分发体系中的应用前景。激光通信链路可用于构建未来空间骨干网,附加在激光链路上的量子光通信链路可以极大提升链路保密性能,太赫兹通信链路可能在未来卫星星座及伴随飞行集群内部高速数据交换场合提供大带宽及灵活组网的通信能力。各种新形式的链路技术结合起来,可以为天基信息传输分发系统提供支撑。  相似文献   

16.
Small satellites, weighting between 100 and 200 kg, have witnessed increasing use for a variety of space applications including remote sensing constellations and technology demonstrations. The energy storage/stored power demands of most spacecraft, including small satellites, are currently accommodated by rechargeable batteries—typically nickel–cadmium cells (specific energy of 50 Wh kg−1), or more recently lithium-ion cells (150 Wh kg−1). High energy density is a primary concern for spacecraft energy storage design, and these batteries have been sufficient for most applications. However, constraints on the allowable on-board battery size have limited peak power performance such that the maximum power supply capability of small satellites currently ranges between only 70 and 200 W. This relatively low maximum power limits the capabilities of small satellites in terms of payload design and selection. In order to enhance these satellites' power performance, the research reported in this paper focused on the implementation of super-capacitors as practical rechargeable energy storage medium, and as an alternative to chemical batteries. Compared to batteries, some super-capacitors are able to supply high power at high energy-efficiency, but unfortunately they still have a very low energy density (5–30 Wh kg−1). However, the provision of this high power capability would considerably widen the range of small satellite applications.  相似文献   

17.
The ZDPS-1A pico-satellite, developed by the Zhejiang University, is featured with a three-axis stabilizing capability. It is 15×15×15 cm3 cube-shaped satellite with a total mass of 3.5 kg. ZDPS-1A is the first pico-satellite that has been launched successfully in China. The mission of ZDPS-1A is on-orbit system verification of student-build pico-satellite and wide range earth observation with a micro panoramic camera. A miniature momentum wheel is employed to offer gyro stiffness stability in the pitch (orbit normal) axis. Magnetic coils are employed to generate control torques to achieve the three-axis stabilization of nadir-pointing. The attitude sensors employed in the design include two three-axis magnetometers (TAMs), a three-axis gyro, and two sun sensors. Both ground simulations and on-orbit testing are conducted to verify the feasibility of the given attitude determination and control system (ADCS).  相似文献   

18.
阐述在中低轨道卫星星座全球通讯网络中应用的激光星间链路与在中继星间应用的激光星间链路相比,所具有的明显的优势。同时给出了应用于小卫星上的小光学用户终端的基本组成,并指出了当前在中低轨道卫星星座激光星间链路研究中所应当进行的主要研究方面。  相似文献   

19.
The use of the Internet has been grown tremendously within the last decade to more than one billion subscribers. The other five billion people on Earth cannot enjoy the possibilities offered by the Internet.The digital divide is everywhere: in the developing as well as in the developed part of the world.In the developing countries basic communication needs (voice, IP access) need to be provided to a large population not living in cities.In the developed part of the world people residing outside the large cities, on the nice country side, have still difficulties to get broadband access. The reason being, that the investment to install the network infrastructure to this minority part of the population is a major part of the total investment for the network. The benefit for the telecom operators is marginal to get these customers on board.In this paper an analysis of the Internet and satellite development is being presented and based on these historical data a prediction of a possible evolution of satellite communications and broadband access is performed.One result is that the capacity of the GEO ring at the Ka-band alone would allow to provide to each individual on Earth in 2050 (assumed to be 10 billion people) a monthly capacity of about 1 Gbyte for a charge of 1$ per month.  相似文献   

20.
《Acta Astronautica》2007,60(8-9):752-762
A study of the evolution and optical detectability of a fragmentation debris cloud in geosynchronous orbit has been carried out. The 1998 NASA breakup model has been used to generate orbit data for 95 fragments larger than 10 cm size from a 1000 kg satellite. The orbital evolution of these fragments is studied using a precision numerical propagator, employing a high-fidelity force model. Although the fragments rapidly disperse throughout the geostationary arc, they remain localised in right ascension of ascending node and inclination, and are driven along a narrow inertial corridor by luni-solar perturbations. The ESA PROOF software is used to study the detectability of the fragments using a 1- and 0.5-m telescope design. The 1-m telescope can detect 82% of the fragments (down to 13 cm in size) whilst the 0.5-m telescope can detect 39% of the fragments (down to 30 cm size). Due to the large along-track spread of the fragments, a time limit of 1-month post-breakup can be established for a space surveillance system to catalogue the breakup fragments. After this time the angular separation is such that the fragments disperse into the background population, and are no longer distinguishable as originating from a common breakup event.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号