首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 642 毫秒
1.
基于纤维缠绕技术的自适应天线反射器   总被引:1,自引:0,他引:1  
现代信息社会越来越需要更大的通讯能力,这种需要可通过发展更高的远程通讯频率来满足,为实现此目的,使用发射天线的卫星通讯系统,德国宇航研究院结构力学研究所正在研制一种新的、用于卫星天线发射器的自适应结构体系。本文介绍了一种直径为900毫米的抛物面型叠层发射器的制造工艺。该卫星天线发射器叠层材料为中等弹性模量的碳- 氧树脂面板和带有集成激励控制驱动器的铝蜂窝夹芯。并将给出驱动器封装的制造,纤维缠绕过程和驱动器的装配方法,本文介绍了这一新的设计思想和具有高效控制,高热稳定性及经济的,重量轻的自适应智能天线反射器结构。  相似文献   

2.
High temperature composites have been extensively developed in order to produce thermal protection systems of reusable re-entry vehicles and launchers. This development effort covers all aspects including sizing, design, manufacturing processes characterization, non destructive inspection, and all industrial facilities which have also been installed. Strong interest recently appeared for these materials to meet requirements for different space applications. In particularly, for more stringent optical payloads, new materials with high performance requirements have appeared. In the field of high dimensionally stable structures for telescopes, materials have to meet severe requirements, such as low coefficients of thermal expansion, good specific modulus, long-term stability (moisture and chemical insensitivity), etc. Carbon/carbon (C/C) composites can meet these specifications. To demonstrate this capability a structure has been designed, manufactured and will be submitted for complete testing (work supported by ESA/ESTEC). The main available results (part feasibility, characterizations, analysis and stability performance budgets) are presented. For future telescope mirrors, silicon carbide is already known as a good candidate. However, an innovative concept based on silicon carbide sandwich honeycomb technology, which allows optimized design, has been developed. The first characterization results and manufacturing capabilities are presented.  相似文献   

3.
紧密围绕航天结构未来发展需求,以增材制造复杂产品研发为研究对象,对实现设计制造一体化的技术路线和关键技术进行分析。把设计、仿真和制造有机统一起来,把工艺设计纳入结构设计流程,通过仿真驱动设计来提高产品质量、降低制造成本。研究成果可应用于航天领域增材制造产品研发,对传统设计制造模式向智能制造转型具有积极探索意义。  相似文献   

4.
针对航天员出舱过程所用安全绳锁挂频繁的问题,进行了安全高效的航天员出舱牵引系统构型设计,可作为太空行走的辅助导向装置。基于材料结构弹塑性力学方程与含应变耦合项的热传导方程,推导结构热力响应可计算数学模型,利用Newmark方法以及Crank-Nicolson数值格式分别对热弹性方程和热传导方程进行时间域上的离散,构造金属结构响应无条件稳定隐式有限元格式,搭建了温度场与位移场相互影响热力耦合有限元算法(FEM)性能评估软件系统,以此对牵引系统的导轨进行热力耦合数值计算,得到在太阳辐射外热流载荷作用下具有较强抗变形能力的结论。计算了航天员采用牵引系统出舱时对导轨产生的拉力,并借助ANSYS Workbench对导轨进行静力学求解,验证了该牵引系统具备结构强度可靠性,可为空间站建设舱外作业平台提供重要理论分析依据与设计参考。  相似文献   

5.
粟华  陈伟俊  龚春林  李鹏 《宇航学报》2022,43(3):374-382
针对广泛应用于飞行器的薄壁圆筒结构,在优化设计时未考虑薄壁特性导致优化结果加工性和稳定性欠佳的问题,提出一种面向飞行器总体设计阶段的环向肋增稳薄壁圆筒结构定向拓扑优化方法.该方法首先依据薄壁结构壁厚方向将有限单元划分成组,以单元组为基本单位构成优化设计空间,保证优化结果具有定向性,进而保证优化结果符合薄壁结构加工特性;...  相似文献   

6.
3D-printing technologies are receiving an always increasing attention in architecture, due to their potential use for direct construction of buildings and other complex structures, also of considerable dimensions, with virtually any shape. Some of these technologies rely on an agglomeration process of inert materials, e.g. sand, through a special binding liquid and this capability is of interest for the space community for its potential application to space exploration. In fact, it opens the possibility for exploiting in-situ resources for the construction of buildings in harsh spatial environments. The paper presents the results of a study aimed at assessing the concept of 3D printing technology for building habitats on the Moon using lunar soil, also called regolith. A particular patented 3D-printing technology – D-shape – has been applied, which is, among the existing rapid prototyping systems, the closest to achieving full scale construction of buildings and the physical and chemical characteristics of lunar regolith and terrestrial regolith simulants have been assessed with respect to the working principles of such technology. A novel lunar regolith simulant has also been developed, which almost exactly reproduces the characteristics of the JSC-1A simulant produced in the US. Moreover, tests in air and in vacuum have been performed to demonstrate the occurrence of the reticulation reaction with the regolith simulant. The vacuum tests also showed that evaporation or freezing of the binding liquid can be prevented through a proper injection method. The general requirements of a Moon outpost have been specified, and a preliminary design of the habitat has been developed. Based on such design, a section of the outpost wall has been selected and manufactured at full scale using the D-shape printer and regolith simulant. Test pieces have also been manufactured and their mechanical properties have been assessed.  相似文献   

7.
Plans for interplanetary manned space missions imply significant risks arising from human's exposure to the hostile space environment. Thus the design of reliable protection systems against the ionizing cosmic radiation becomes one of the most relevant issues. In this paper the composition and magnitude of the atmospheric radiation on the planetary surface and for typical interplanetary transfer configurations have been analyzed. The investigation based on prior NASA and ESA mission results, using a manned mission to planet Mars as a case study. According to this, the time-dependent character of the consistency of cosmic radiation has been taken into account, which is justified by the interdependence of the radiation magnitude to the solar cycle. With regard to this paper it implies even solar particle events. The results have been compared to the protective character of different materials potentially usable as a habitat's structural shell and for interplanetary spacecrafts. The investigation aimed on particle energy degradation rates and reduction of secondary particle production. In this regard the physical process of absorbing effectiveness against particle radiation has been examined by analytical calculation and given scientific results, depending on thickness and molecular composition of the materials. The most suitable materials have been used for shield design proposals using different configurations, evaluating the use of aluminium, water tanks and polyethylene bricks.  相似文献   

8.
国际空间站是目前在轨运行的最大空间平台,具有系统体积庞大、构型复杂、接口众多、载荷种类不确定等特点。因此,系统级力学试验、热试验以及组件环境试验对空间站的设计和工艺验证非常重要。文章调研了国际空间站各舱段的系统级力学试验、热试验以及组件环境试验情况,以期为我国空间站的地面试验系统设计、研制提供参考。  相似文献   

9.
何钦象  祖磊  李辅安 《宇航学报》2006,27(6):1350-1355
针对诸如环形气瓶等圆环状压力容器的缠绕,提出同时满足结构特性和缠绕工艺性的参数设计方法以符合实际工程需要。推导了圆环面纤维不架空和不滑移判据;根据内压作用下纤维螺旋加环向缠绕环壳的平衡方程,考虑截面厚度变化和缠绕初始条件,给出了均衡缠绕参数及线型的确定方法,讨论了在不同管径比和厚度比下该线型路径的稳定性;以螺旋向铺层的初始缠绕角和厚度为变量,对结构进行重量最小化设计。作为算例,对纤隹缠绕环形高压气瓶在爆破压强为40—80MPa的范围内进行优化设计。结果表明,优化设计的均衡缠绕线型模式睛确可靠,满足纤维缠绕的基本要求,能充分发挥缠绕结构的力学性能。本文的设计计算方法可直接用于复合材辞环形气瓶的初步设计。  相似文献   

10.
固体火箭发动机复合裙成型工艺研究   总被引:5,自引:1,他引:5  
概述了复合裙成型工艺方案、典型复合裙的裙体结构及连接形式.介绍了国内复合裙的研制情况。采用高模量混杂树脂基体配方、整体成型工艺方案、铺层优化分析等技术.研制出~150mm、~480mm及垂1000mm复合裙。试验结果表明.复合材料连接裙性能满足设计指标.与铝裙相比,可减重30%左右。  相似文献   

11.
航天结构的约束阻尼振动抑制优选方案研究   总被引:2,自引:0,他引:2  
约束阻尼结构的高可靠性和良好的阻尼性能使得它在航天振动控制工程中得到了越来越广泛的应用。但是为实现约束阻尼结构的减重增效 ,需要寻找其优选的方案。本文通过典型的一种耦合结构约束阻尼振动抑制方案研究 ,得到了其优选的振动抑制方案。仿真结果表明 ,约束层和粘弹层相等面积铺设的方案比较保守 ;可以通过合理布置粘弹层而不改变约束层面积的方案来代替 ,实现约束阻尼结构的减重增效。该方案可为约束阻尼振动抑制设计提供参考  相似文献   

12.
着眼于利用柔性压电元件获取空间充气展开结构的动力学特性,文章基于通用有限元软件ABAQUS,建立考虑压电耦合的空间充气展开结构频率响应分析方法,依次进行非线性充气预应力分析、模态分析和频率响应特性分析。以空间充气杆为例,分别利用有限元仿真和地面实验的方法得到其频响曲线,两者共振峰频率偏差小于2.3%,验证了充气展开结构有限元仿真方法的有效性。研究结果可为进一步分析空间充气展开结构的动力学特性和实施结构优化设计提供参考。  相似文献   

13.
文章描述了一个用于航天器防护结构综合优化的独特方法——几何规划优化技术,以减小暴露于流星体和空间碎片超高速碰撞环境下的航天器防护结构系统的重量。空间碎片和流星体环境由广义加权目标函数的公式来定义。通过Wilkinson,Burch和Nysmith超高速碰撞预示模型说明几何规划的性能。表明遵循几何规划形式的超高速碰撞模型,可以进行综合非线性设计优化。  相似文献   

14.
In recent years, there has been continuing interest in the participation of university research groups in space technology studies by means of their own microsatellites. The involvement in such projects has some inherent challenges, such as limited budget and facilities. Also, due to the fact that the main objective of these projects is for educational purposes, usually there are uncertainties regarding their in orbit mission and scientific payloads at the early phases of the project. On the other hand, there are predetermined limitations for their mass and volume budgets owing to the fact that most of them are launched as an auxiliary payload in which the launch cost is reduced considerably. The satellite structure subsystem is the one which is most affected by the launcher constraints. This can affect different aspects, including dimensions, strength and frequency requirements. In this paper, the main focus is on developing a structural design sizing tool containing not only the primary structures properties as variables but also the system level variables such as payload mass budget and satellite total mass and dimensions. This approach enables the design team to obtain better insight into the design in an extended design envelope. The structural design sizing tool is based on analytical structural design formulas and appropriate assumptions including both static and dynamic models of the satellite. Finally, a Genetic Algorithm (GA) multiobjective optimization is applied to the design space. The result is a Pareto-optimal based on two objectives, minimum satellite total mass and maximum payload mass budget, which gives a useful insight to the design team at the early phases of the design.  相似文献   

15.
A series of 66 hypervelocity impact experiments have been performed to assess the potential of various materials (aluminium, titanium, copper, stainless steel, nickel, nickel/chromium, reticulated vitreous carbon, silver, ceramic, aramid, ceramic glass, and carbon fibre) and structures (monolithic plates, open-cell foam, flexible fabrics, rigid meshes) for micrometeoroid and orbital debris (MMOD) shielding. Arranged in various single-, double-, and triple-bumper configurations, screening tests were performed with 0.3175 cm diameter Al2017-T4 spherical projectiles at nominally 6.8 km/s and normal incidence. The top performing shields were identified through target damage assessments and their respective weight. The top performing candidate shield at the screening test condition was found to be a double-bumper configuration with a 0.25 mm thick Al3003 outer bumper, 6.35 mm thick 40 PPI aluminium foam inner bumper, and 1.016 mm thick Al2024-T3 rear wall (equal spacing between bumpers and rear wall). In general, double-bumper candidates with aluminium plate outer bumpers and foam inner bumpers were consistently found to be amongst the top performers. For this impact condition, potential weight savings of at least 47% over conventional all-aluminium Whipple shields are possible by utilizing the investigated materials and structures. The results of this study identify materials and structures of interest for further, more in-depth, impact investigations.  相似文献   

16.
空间飞网质量块动力学分析及收口机构优化设计   总被引:1,自引:0,他引:1  
王波  郭吉丰 《宇航学报》2012,33(10):1377-1383
 研究空间飞网收口机构在捕获过程中产生翻滚缠绕的原因及质量块优化设计的方法。通过在质量块连体坐标中对其所受空间力系进行简化,分析质量块产生翻滚的原因,并据此对质量块与捕获网的连接进行优化设计。建立了超声波电机启动后质量块各转动部分的动力学方程,分析了其对产生缠绕的影响。并据此对原质量块的结构进行改进和优化设计。实验证明经优化设计的新结构改善了收口机构翻滚缠绕问题。  相似文献   

17.
The purpose of this paper is to describe a program aimed at an early on orbit demonstration of a large space structure fabrication and assembly capability. Requirements for the demonstration concept have been formulated. The concept that has been selected to meet these requirements is a Large Space Structure Platform consisting of a triangular prism of 31.5 m length. Sensors can be mounted on this platform to perform Earth observation measurements from space. Structural elements of the platform are fabricated using an automated beam builder in the Shuttle Orbiter payload bay. Special fixtures are designed to assemble the structure with the aid of the Remote Manipulator System and two astroworkers in an EVA mode. Results are shown of the platform preliminary design in terms of a design layout with related structural, thermal, mass properties and control dynamics data. The assembly scenario is described. Estimates of the total construction time and Orbiter support requirements are also presented.  相似文献   

18.
研究表明,稳态等离子体推力器(SPT)具有比冲大、效率高、寿命长的优点,是具有较高性能的先进空间推进系统之一,已广泛应用于小卫星的姿态控制和轨道保持。概述了SPT的系统组成和工作原理,重点介绍了SPT的研究进展、主要性能参数、关键技术及其在潜在应用领域中的性能优势,指出其关键技术有空心阴极的热设计和结构设计以及弯曲磁场位形的设计。对我国SPT研究内容提出了建议。  相似文献   

19.
裸芯片die、硅通孔TSV(Through Silicon Via)硅转接板、高温共烧陶瓷HTCC(High Temperature Co-fired Ceramics)管壳等多材质多基板立体堆叠和高密度集成的微系统封装,因空间极度有限、跨尺度立体转换的失配、电磁效应的耦合,低电压大电流电源的电源分布网络PDN(Power Distribution Network)和GHz高速信号的通道设计成为难题。贴合微系统封装尺度越来越接近芯片尺度的特点,以及微系统模块的系统应用需求,研究了基于芯片、封装、系统CPS(Chip-Package-System)协同设计仿真的方法。针对核心电源PDN的设计,采用芯片功耗模型CPM(Chip Power Model),结合TSV硅基板、HTCC管壳、PCB三级去耦电容网络的布放和协同优化,有效降低了电源纹波,保证了电源完整性。针对高速信号通道设计,基于电磁场和电路结合的仿真,将芯片电特性配置与封装互连的拓扑匹配协同优化,封装与板级应用协同优化,保证了信号完整性,且不对封装版图和工艺提出严苛要求。  相似文献   

20.
The strength of the connection structure has always been a key issue in the structural design of a launch vehicle. In this paper, the finite element analysis method is used for the strength of typical connection structures of a new launch vehicle. The research scope includes the inter-stage connection structure and the bundle connection structure. Aiming at establishing the strength of these two connection structures under flight conditions, we built a refined finite element model, simulated the bolt tensile test and obtained a calculation criteria, and carried out finite element analysis of the connection structures under flight conditions. As a result, we not only established the analysis and evaluation method of the connection structures based on the refined finite element modeling analysis, but also provided a fast numerical simulation design method for the development of the launch vehicle's connection structures, which greatly improved the design efficiency and reduced the design risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号