首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider the stability of stationary motions of a model of a spacecraft as a system of coaxial bodies with small asymmetry caused by the shift of the axes of dynamic symmetry of bodies relative to the axis of rotation. We determine the stationary motions of the system; their stability is studied with respect to both the projections of angular velocity and the position of the axis of rotation. The sufficient conditions for the stability of these stationary motions are obtained by constructing a Lyapunov function, and the necessary conditions are obtained by analyzing the corresponding linearized equations of perturbed motion.  相似文献   

2.
非线性动力学理论及其在机械系统中应用的若干进展   总被引:1,自引:0,他引:1  
非线性动力学的理论及其工程应用是非线性科学研究的前沿和热点,应用非线性动力学的理论揭示事物动态过程现象的本质和机理,进行自主性原始创新,具有十分重大的理论和应用价值,在科学与工程中具有广阔的应用前景。综述非线性动力学基础理论方面的近期研究成果及其在机械系统中应用的研究进展。理论研究方面主要涉及揭示非线性动力系统周期分岔解与系统结构参数之间关系的C—L方法、高余维分岔的普适分类、高余维非对称分岔的普适开折、约束分岔的分类、计算非线性自治系统正规形的直接方法、计算非线性非自治系统正规形的复内积平均法以及高维非线性系统的降维方法等。应用方面主要涉及大型旋转机械非线性转子系统的失稳机理、分岔解与混沌运动、故障诊断及其综合治理技术;冲击振动机械的稳定性、Hopf分岔、亚谐分岔、余维二分岔和混沌运动;大型共振筛的非线性振动及其动力学设计方法等。  相似文献   

3.
利用库仑力实现悬停轨道的新方法研究   总被引:1,自引:0,他引:1  
研究了利用库仑力控制实现近距离悬停轨道的问题。针对常规推力器对悬停任务可能产生的羽流污染,提出了一种使用航天器间库仑力实现悬停轨道的新方法,并研究了使用该方法实现悬停轨道的开环与闭环控制问题。基于所建立的库仑力悬停轨道动力学模型,给出了目标为一般椭圆轨道时的开环控制律。基于线性化的悬停轨道动力学模型,给出了目标轨道为圆轨道时的闭环控制律,并进行了数值仿真,结果表明所建立的动力学模型及所设计的控制律是有效的和可行的。文章提出的方法也可以用于其他类型的航天器近距离相对运动控制问题。  相似文献   

4.
The motion of a satellite close to a dynamically symmetric solid body in a Newtonian gravitational field over a circular orbit is studied. The system of differential equations describing the body’s motion is close to a system with cyclic coordinate. New classes of periodic motions are constructed in the neighborhood of a known partial solution to an unperturbed problem, hyperboloidal precession of a dynamically symmetric satellite. In the resonance case, when the ratio of one frequency of small oscillations of a reduced system with two degrees of freedom in the neighborhood of a stable equilibrium position to the frequency of cyclic coordinate variation is close to an integer number, there exist one or three families of periodic motions that are analytic in terms of fractional powers of a small parameter. A study of stability of these motions was performed with the help of KAM (Kolmogorov-Arnold-Moser) theoty. Faling the described resonance there exists a unique family of periodic motions that is analytic in terms of integer powers of a small parameter. The check-up of stability of these motrons was carried out. We distinguished the cases of parametric resonance, resonances of the third and fourth orders, and a non-resonant case. In the resonance cases our study relies on well-known results on stability of Hamiltonian systems during resonances [1]. In the non-resonant case we use the KAM theory [2].  相似文献   

5.
Coulomb formations refer to swarms of closely flying spacecraft, in which the net electric charge of each vehicle is controlled. Active charge control is central to this concept and enables a propulsion system with highly desirable characteristics, albeit with limited controllability. Numerous Coulomb formation equilibria have been derived, but to maintain and maneuver these configurations, some inertial thrust is required to supplement the nearly propellant-less charge control. In this work, invariant manifold theory is applied to two-craft Coulomb equilibria, which are admitted in a linearized two-body gravity model. The manifolds associated with these systems are analyzed for the first time, and are then utilized as part of a general procedure for formulating optimal reconfigurations. Specifically, uncontrolled flows along the manifolds are sought which provide near continuous transfers from one equilibrium to another. Control is then introduced to match continuity, while minimizing inertial thrusting. This methodology aims to exploit uncontrolled motions and charge control to realize the shape-changing ability of these formations, without large inertial control efforts. Some variations in formulating and parameterizing the optimal transfers are discussed, and analytical expressions are derived to aid in establishing control parameter limits, under certain assumptions. Numerical results are provided, as demonstrative examples of the optimization procedure, using relatively simple control approximations. Finally, Particle Swarm Optimization, a novel stochastic method, is used with considerable success to solve the numerically difficult parameter optimization problems.  相似文献   

6.
王旭刚  周军 《宇航学报》2011,32(7):1445-1450
基于复角模型,研究了弹头偏转对于偏转头导弹飞行稳定性和操纵性的影响。依据偏转头导弹的多体特点,建立了包含弹头和弹体动力学特征的滚转偏转头导弹多体动力学模型,通过模型简化,得出了其复角模型。以弹头偏角作为输入,攻角和侧滑角作为输出,得出了滚转偏转头导弹的传递函数。分析传递函数发现,弹头偏转主要影响了导弹传递函数的零点,文中给出了满足系统最小相位的条件公式;当弹体绕纵轴逆时针旋转时(由弹尾向前看),导弹模型总为最小相位系统;定性分析了气动参数对于导弹运动稳定性的影响,得出弹头偏转运动对于飞行稳定性没有直接影响的结论;动力学仿真表明,弹头与弹体相互作用,导致两者产生相反的角运动。本研究表明,通过合理的选择气动和结构参数,并使导弹飞行过程中绕纵轴逆时针旋转,可以保证偏转头滚转导弹飞行过程中的运动稳定性,并有利于自动驾驶仪的设计。  相似文献   

7.
The results of a stability analysis focusing on the out-of-plane motion of collinear three-craft Coulomb formations with set charges are discussed. Such a formation is assumed to be spinning in deep space without relevant gravitational forces present. Assuming in-plane motion only with circular relative trajectories and initial position and velocity perturbations confined to the orbital plane, the previous work analytically proves marginal stability in the linear sense and numerically shows marginal stability in the short term. In this paper, the equations of motion are presented in the cylindrical coordinate frame in order to analyze the out-of-plane motion in more detail. The out-of-plane motion is shown to decouple to first order from the marginally stable in-plane motion. A simple control law is developed and applied, which directly controls the out-of-plane motion only within specified deadbands. For a wide variety of out-of-plane perturbations, the control law succeeds in preserving the in-plane variant shape despite some out-of-plane motion. A trend between the settling time and deadband, which defines the largest out-of-plane errors allowed before the controller is turned on, is determined, which illustrates how large the deadband may be before the in-plane motion is affected.  相似文献   

8.
In this paper, in-plane periodic solutions for a dumbbell model in elliptic orbits are searched using bifurcation, and their trajectories are projected on the van der Pol planes. The trajectories projected on the van der Pol plane will be employed as a tool to predict when the control of delayed feedback control will need to act to maintain the periodic motions.  相似文献   

9.
The problem of planar motions of a dumbbell-like body of variable length in a central field of Newtonian attraction is considered both in the exact formulation and in satellite approximation. In the satellite approximation the true anomaly of the center of mass is used as an independent variable, which has allowed us to represent the equation of planar oscillations of the dumbbell in the form similar to the Beletskii equation. Some exact solutions to the inverse problem are given both in the complete formulation and in satellite approximation. Under an assumption of small orbit eccentricity and amplitude of the dumbbell vibrations the conditions of existence are found for families of almost periodic motions and splitting separatrices. The phenomena of alternation of regular and chaotic motions are established numerically, as well as chaos suppression with increasing frequency of vibrations. Using the method of averaging the stabilization of tangent equilibria is proved to be impossible.  相似文献   

10.
The problem of planar oscillations of a pendulum with variable length suspended on the Moon’s surface is considered. It is assumed that the Earth and Moon (or, in the general case, a planet and its satellite, or an asteroid and a spacecraft) revolve around the common center of mass in unperturbed elliptical Keplerian orbits. We discuss how the change in length of a pendulum can be used to compensate its oscillations. We wrote equations of motion, indicated a rule for the change in length of a pendulum, at which it has equilibrium positions relative to the coordinate system rotating together with the Moon and Earth. We study the necessary conditions for the stability of these motions. Chaotic dynamics of the pendulum is studied numerically and analytically.  相似文献   

11.
We investigated periodic motions of the axis of symmetry of a model satellite of the Earth, which are similar to the motions of the longitudinal axes of the Mir orbital station in 1999–2001 and the Foton-M3 satellite in 2007. The motions of these spacecraft represented weakly disturbed regular Euler precession with the angular momentum vector of motion relative to the center of mass close to the orbital plane. The direction of this vector during the motion was not practically changed. The model satellite represents an axisymmetric gyrostat with gyrostatic moment directed along the axis of symmetry. The satellite moves in a circular orbit and undergoes the action of the gravitational torque. The motion of the axis of symmetry of this satellite relative to the absolute space is described by fourth-order differential equations with periodic coefficients. The periodic solutions to this system with special symmetry properties are constructed using analytical and numerical methods.  相似文献   

12.
一类受周期扰动航天器的混沌姿态运动   总被引:1,自引:0,他引:1  
雍恩米  唐国金 《宇航学报》2005,26(5):535-540,546
研究了航天器从绕最小惯量主轴到最大惯量主轴旋转的姿态机动过程中的混沌现象。考虑到航天器内部或外部的振动部件的影响,假设两个主轴的转动惯量为时间的周期函数,同时还考虑了航天器内结构阻尼以及稀薄气体阻力的影响。应用高维的Melnikov方法,求解姿态机动过程中产生混沌的条件的解析表达式,且得到的阀值条件是扰动系统参数的函数。最后对该阀值条件进行了数值验证。  相似文献   

13.
王婷  张羽飞 《宇航学报》2015,36(11):1279-1288
分析了立体五星编队在静电力和万有引力作用下的静态构型。分别讨论了五星编队在共线和平面情况下的静态构型,着重研究了五星构成立体双直角六棱锥构型时各个卫星所带的静电荷量。由于地球同步轨道的卫星所受到的作用力不仅是万有引力与静电库仑力,还有空气阻力等摄动力,因此只有对其施加控制,卫星才能在静态平衡点保持编队构型的稳定性。本文采用线性二次型最优控制方法来保持编队的静态构型稳定,并通过Matlab实现了五星立体库伦编队飞行控制仿真。  相似文献   

14.
Exploration of the Solar System has recently revealed the existence of a large number of asteroids with satellites, which has stimulated interest in studying the dynamics of such systems. This paper is dedicated to the analysis of the relative motion of a binary asteroid. The conditions of existence of such a system (i.e., when its components do not run away) are derived in the Introduction. Then it is assumed that the satellite has no significant effect on the motion of the main asteroid, the latter being modeled as a dumbbell-like precessing solid body. The equations of motion of this system are a two-parameter generalization of the corresponding equations of the restricted circular three-body problem. It is demonstrated that in the system under consideration there exist steady-state motions in which the small asteroid is equidistant from attracting centers at the ends of the dumbbell (an analog to triangle libration points). The conditions of existence of such motions are derived, and the positions with respect to the dumbbell are analyzed in detail. Examination of the stability of the triangle libration points is reduced to investigation of a characteristic equation of the sixth degree. The stability conditions are derived in the case when the main asteroid executes near-planar motion.  相似文献   

15.
16.
Small spacecraft formation using potential functions   总被引:1,自引:0,他引:1  
Ahmed Badawy  Colin R. McInnes   《Acta Astronautica》2009,65(11-12):1783-1788
A group of small spacecraft able to change its orbital formation through using the potential function is discussed. Spacecraft shapes, sizes, and maneuvering capabilities in general are not identical. All objects are assumed to maneuver under discrete thruster effects. A hyperbolic form of attractive potential function is then used to reduce the control intervention by using the natural orbital motion for approaching goal configuration. A superquadric repulsive potential with 3D rigid object representation is then used to have more accurate mutual sensing between objects. As spacecraft start away from their goals, the original parabolic attractive potential becomes inefficient as the continuous control force increases with distance linearly. The hyperbolic attractive potential offers good representation of the control force independent of the distance to goal, ensuring global stability as well.  相似文献   

17.
《Acta Astronautica》2010,66(11-12):1783-1788
A group of small spacecraft able to change its orbital formation through using the potential function is discussed. Spacecraft shapes, sizes, and maneuvering capabilities in general are not identical. All objects are assumed to maneuver under discrete thruster effects. A hyperbolic form of attractive potential function is then used to reduce the control intervention by using the natural orbital motion for approaching goal configuration. A superquadric repulsive potential with 3D rigid object representation is then used to have more accurate mutual sensing between objects. As spacecraft start away from their goals, the original parabolic attractive potential becomes inefficient as the continuous control force increases with distance linearly. The hyperbolic attractive potential offers good representation of the control force independent of the distance to goal, ensuring global stability as well.  相似文献   

18.
卢山  姜泽华  刘禹  陈敏花 《宇航学报》2021,42(4):458-466
针对使用空间绳网捕获带有太阳帆板等柔性附件的大型失效航天器的碎片清除任务,充分考虑了拖曳过程中柔性附件产生的振动对系统的稳定造成的影响。首先采用凯恩方法建立了失效航天器绳系拖曳系统动力学模型,在建模过程中充分考虑系绳的质量和振动、帆板的振动、系统的轨道运动对姿态的影响等,使动力学模型更加详细和完整,且该动力学模型不受失效航天器所处位置的限制,适用于任意轨道上的失效航天器的拖曳离轨任务;之后根据平衡状态的特点,求取了系统的平衡解,并在平衡解附近对动力学方程线性化,然后采用李雅普诺夫方法分析了系统的稳定性及各参数的变化规律;并针对失效航天器可能产生的姿态章动设计了常值张力切换控制律;最后采用数值仿真的方法分析了失效航天器的帆板振动对绳系拖曳过程的影响,校验了控制律的有效性。  相似文献   

19.
Three axis attitude stabilization of a satellite using a single spinning reaction wheel mounted on a two degree-of-freedom passively and actively torqued gimbal system is investigated. The passive control is assumed to be provided by a spring-loaded damper mounted on each of the gimbal axes, while active control results from both the wheel acceleration and the torque applied about the gimbal axes. The stability of the uncontrolled and passively controlled systems is investigated analytically. For constant wheel speed the pitch motion is decoupled from the roll-yaw and gimbal motions. Control laws for the roll-yaw motion are developed based on pole clustering and linear optimal control theory. For the pitch motion control laws are obtained based on classical second order system theory. Estimation techniques are applied to the roll-yaw system for the case when the complete state may not be directly observable (in the absence of a fine yaw position sensor).  相似文献   

20.
A nonlinear controller based on polynomial eigenstructure assignment (PEA) is presented for the control of Sun–Earth L2 point formation flying. The relative motion dynamics is formulated as a nonlinear equation and rewritten as a Quasi-Linear Time-Varying (QLTV) model. Using a coprime factorization of the desired closed-loop transfer function, the PEA controller structure is calculated by representing the controller gains as polynomials. During the implementation of spacecraft formation flying, the PEA method is extended from Linear Time-Invariant (LTI) and Linear Parameter-Varying (LPV) models to a QLTV model to produce a closed-loop system with invariant performance over a wide range of conditions. To ensure system performance, the analytic stability analysis of the closed-loop system is developed and a position keeping controller for MIMO formation flying is designed using a decoupling method to achieve the desired performance. Finally, a simulation is carried out to validate the controller performance for the formation flying.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号