首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
A central question in astrobiology is whether life exists elsewhere in the universe. If so, is it related to Earth life? Technologies exist that enable identification of DNA- or RNA-based microbial life directly from environmental samples here on Earth. Such technologies could, in principle, be applied to the search for life elsewhere; indeed, efforts are underway to initiate such a search. However, surveying for nucleic acid-based life on other planets, if attempted, must be carried out with caution, owing to the risk of contamination by Earth-based life. Here we argue that the null hypothesis must be that any DNA discovered and sequenced from samples taken elsewhere in the universe are Earth-based contaminants. Experience from studies of low-biomass ancient DNA demonstrates that some results, by their very nature, will not enable complete rejection of the null hypothesis. In terms of eliminating contamination as an explanation of the data, there may be value in identification of sequences that lie outside the known diversity of the three domains of life. We therefore have examined whether a fourth domain could be readily identified from environmental DNA sequence data alone. We concluded that, even on Earth, this would be far from trivial, and we illustrate this point by way of examples drawn from the literature. Overall, our conclusions do not bode well for planned PCR-based surveys for life on Mars, and we argue that other independent biosignatures will be essential in corroborating any claims for the presence of life based on nucleic acid sequences.  相似文献   

2.
Davies PC 《Astrobiology》2003,3(4):673-679
The hypothesis that life's rapid appearance on Earth justifies the belief that life is widespread in the universe has been investigated mathematically by Lineweaver and Davis (Astrobiology 2002;2:293-304). However, a rapid appearance could also be interpreted as evidence for a nonterrestrial origin. I attempt to quantify the relative probabilities for a non-indigenous versus indigenous origin, on the assumption that biogenesis involves one or more highly improbable steps, using a generalization of Carter's well-known observer-selection argument. The analysis is specifically applied to a Martian origin of life, with subsequent transfer to Earth within impact ejecta. My main result is that the relatively greater probability of a Martian origin rises sharply as a function of the number of difficult steps involved in biogenesis. The actual numerical factor depends on what is assumed about conditions on early Mars, but for a wide range of assumptions a Martian origin of life is decisively favored. By contrast, an extrasolar origin seems unlikely using the same analysis. These results complement those of Lineweaver and Davis.  相似文献   

3.
Continued interest in the possibility of evidence for life in the ALH84001 Martian meteorite has focused on the magnetite crystals. This review is structured around three related questions: is the magnetite in ALH84001 of biological or non-biological origin, or a mixture of both? does magnetite on Earth provide insight to the plausibility of biogenic magnetite on Mars? could magnetotaxis have developed on Mars? There are credible arguments for both the biological and non-biological origin of the magnetite in ALH84001, and we suggest that more studies of ALH84001, extensive laboratory simulations of non-biological magnetite formation, as well as further studies of magnetotactic bacteria on Earth will be required to further address this question. Magnetite grains produced by bacteria could provide one of the few inorganic traces of past bacterial life on Mars that could be recovered from surface soils and sediments. If there was biogenic magnetite on Mars in sufficient abundance to leave fossil remains in the volcanic rocks of ALH84001, then it is likely that better-preserved magnetite will be found in sedimentary deposits on Mars. Deposits in ancient lakebeds could contain well-preserved chains of magnetite clearly indicating a biogenic origin.  相似文献   

4.
We present results from an initial survey of the 2(12)-1(11) transition of formaldehyde (H2CO) at 140.8 GHz in giant molecular clouds in the far outer Galaxy (RG >or= 16 kpc). Formaldehyde is a key prebiotic molecule that likely plays an important role in the development of amino acids. Determining the outermost extent of the H2CO distribution can constrain the outer limit of the Galactic Habitable Zone, the region where conditions for the formation of life are thought to be most favorable. We surveyed 69 molecular clouds in the outer Galaxy, ranging from 12 to 23.5 kpc in galactocentric radius. Formaldehyde emission at 140.8 GHz was detected in 65% of the clouds. The H2CO spectral line was detected in 26 of the clouds with RG > 16 kpc (detection rate of 59%), including 6 clouds with RG > 20 kpc (detection rate of 55%). Formaldehyde is readily found in the far outer Galaxy-even beyond the edge of the old stellar disk. Determining the relatively widespread distribution of H2CO in the far outer Galaxy is a first step in establishing how favorable an environment this vast region of the Galaxy may be toward the formation of life.  相似文献   

5.
Summers DP  Khare B 《Astrobiology》2007,7(2):333-341
Understanding the abiotic fixation of nitrogen is critical to understanding planetary evolution and the potential origin of life on terrestrial planets. Nitrogen, an essential biochemical element, is certainly necessary for life as we know it to arise. The loss of atmospheric nitrogen can result in an incapacity to sustain liquid water and impact planetary habitability and hydrological processes that shape the surface. However, our current understanding of how such fixation may occur is almost entirely theoretical. This work experimentally examines the chemistry, in both gas and aqueous phases, that would occur from the formation of NO and CO by the shock heating of a model carbon dioxide/nitrogen atmosphere such as is currently thought to exist on early terrestrial planets. The results show that two pathways exist for the abiotic fixation of nitrogen from the atmosphere into the crust: one via HNO and another via NO(2). Fixation via HNO, which requires liquid water, could represent fixation on a planet with liquid water (and hence would also be a source of nitrogen for the origin of life). The pathway via NO(2) does not require liquid water and shows that fixation could occur even when liquid water has been lost from a planet's surface (for example, continuing to remove nitrogen through NO(2) reaction with ice, adsorbed water, etc.).  相似文献   

6.
Bains W  Seager S 《Astrobiology》2012,12(3):271-281
Redox chemistry is central to life on Earth. It is well known that life uses redox chemistry to capture energy from environmental chemical energy gradients. Here, we propose that a second use of redox chemistry, related to building biomass from environmental carbon, is equally important to life. We apply a method based on chemical structure to evaluate the redox range of different groups of terrestrial biochemicals, and find that they are consistently of intermediate redox range. We hypothesize the common intermediate range is related to the chemical space required for the selection of a consistent set of metabolites. We apply a computational method to show that the redox range of the chemical space shows the same restricted redox range as the biochemicals that are selected from that space. By contrast, the carbon from which life is composed is available in the environment only as fully oxidized or reduced species. We therefore argue that redox chemistry is essential to life for assembling biochemicals for biomass building. This biomass-building reason for life to require redox chemistry is in addition (and in contrast) to life's use of redox chemistry to capture energy. Life's use of redox chemistry for biomass capture will generate chemical by-products-that is, biosignature gases-that are not in redox equilibrium with life's environment. These potential biosignature gases may differ from energy-capture redox biosignatures.  相似文献   

7.
In recent years, Bacteria and Archaea have been discovered living in practically every conceivable terrestrial environment, including some previously thought to be too extreme for survival. Exploration of our solar system has revealed a number of extraterrestrial bodies that harbor environments analogous to many of the terrestrial environments in which extremophiles flourish. The recent discovery of more than 105 extrasolar planets suggests that planetary systems are quite common. These three findings have led some to speculate that life is therefore common in the universe, as life as we know it can seemingly survive almost anywhere there is liquid water. It is suggested here that while environments capable of supporting life may be common, this does not in itself support the notion that life is common in the universe. Given that interplanetary transfer of life may be unlikely, the actual origin of life may require specific environmental and geological conditions that may be much less common than the mere existence of liquid water.  相似文献   

8.
The release and oxidation of ferrous iron during aqueous alteration of the mineral olivine is known to reduce aqueous solutions to such extent that molecular hydrogen, H2, forms. H2 is an efficient energy carrier and is considered basal to the deep subsurface biosphere. Knowledge of the potential for H2 generation is therefore vital to understanding the deep biosphere on Earth and on extraterrestrial bodies. Here, we provide a review of factors that may reduce the potential for H2 generation with a focus on systems in the core temperature region for thermophilic to hyperthermophilic microbial life. We show that aqueous sulfate may inhibit the formation of H2, whereas redox-sensitive compounds of carbon and nitrogen are unlikely to have significant effect at low temperatures. In addition, we suggest that the rate of H2 generation is proportional to the dissolution rate of olivine and, hence, limited by factors such as reactive surface areas and the access of water to fresh surfaces. We furthermore suggest that the availability of water and pore/fracture space are the most important factors that limit the generation of H2. Our study implies that, because of large heat flows, abundant olivine-bearing rocks, large thermodynamic gradients, and reduced atmospheres, young Earth and Mars probably offered abundant systems where microbial life could possibly have emerged.  相似文献   

9.
Formate, a simple organic acid known to support chemotrophic hyperthermophiles, is found in hot springs of varying temperature and pH. However, it is not yet known how metabolic strategies that use formate could contribute to primary productivity in hydrothermal ecosystems. In an effort to provide a quantitative framework for assessing the role of formate metabolism, concentration data for dissolved formate and many other solutes in samples from Yellowstone hot springs were used, together with data for coexisting gas compositions, to evaluate the overall Gibbs energy for many reactions involving formate oxidation or reduction. The result is the first rigorous thermodynamic assessment of reactions involving formate oxidation to bicarbonate and reduction to methane coupled with various forms of iron, nitrogen, sulfur, hydrogen, and oxygen for hydrothermal ecosystems. We conclude that there are a limited number of reactions that can yield energy through formate reduction, in contrast to numerous formate oxidation reactions that can yield abundant energy for chemosynthetic microorganisms. Because the energy yields are so high, these results challenge the notion that hydrogen is the primary energy source of chemosynthetic microbes in hydrothermal ecosystems.  相似文献   

10.
湿法缠绕用环氧配方适用期研究   总被引:3,自引:0,他引:3  
用DSC、IR、GPC等测试技术对芳纶纤维湿法缠绕复合材料用环氧配方在贮存过程中的粘度,固化度,固化动力学参数以及分子量以及其分布特征进行了研究,研究结果表明,HR18环氧配方的室温适用期较长且随存放温度升高而变短,在较低温的度条件下可延长树脂系统的使用寿命。  相似文献   

11.
The availability of liquid water is the most important factor that makes a planet habitable, because water is a very effective polar molecule and hence an excellent solvent and facilitator for the complex chemistry of life. Its presence presupposes a planet with a significant mass that guarantees the presence of a substantial atmosphere, and a reasonable spinning rate to avoid overheating. It also implies that the planet is at moderate distances from its central star, a range that is called the Ecosphere or the Habitable Zone. Since the evolution of life to high intelligence seems to take billions of years, it requires also that the central star must be neither too massive, that will produce a lot of lethal UV radiation and will have too short a life-span to allow life to evolve, nor of very small mass which will be producing too feeble a radiation to sustain life. The detection of free Oxygen in the atmosphere of a planet is a very strong evidence for the presence of life, because Oxygen is highly reactive and would rapidly disappear by combining with other elements, unless it is continuously replenished by life as the by-product of the process of photosynthesis that builds food for life (sugars) from CO2 and H2O.  相似文献   

12.
The jets of icy particles and water vapor issuing from the south pole of Enceladus are evidence for activity driven by some geophysical energy source. The vapor has also been shown to contain simple organic compounds, and the south polar terrain is bathed in excess heat coming from below. The source of the ice and vapor, and the mechanisms that accelerate the material into space, remain obscure. However, it is possible that a liquid water environment exists beneath the south polar cap, which may be conducive to life. Several theories for the origin of life on Earth would apply to Enceladus. These are (1) origin in an organic-rich mixture, (2) origin in the redox gradient of a submarine vent, and (3) panspermia. There are three microbial ecosystems on Earth that do not rely on sunlight, oxygen, or organics produced at the surface and, thus, provide analogues for possible ecologies on Enceladus. Two of these ecosystems are found deep in volcanic rock, and the primary productivity is based on the consumption by methanogens of hydrogen produced by rock reactions with water. The third ecosystem is found deep below the surface in South Africa and is based on sulfur-reducing bacteria consuming hydrogen and sulfate, both of which are ultimately produced by radioactive decay. Methane has been detected in the plume of Enceladus and may be biological in origin. An indicator of biological origin may be the ratio of non-methane hydrocarbons to methane, which is very low (0.001) for biological sources but is higher (0.1-0.01) for nonbiological sources. Thus, Cassini's instruments may detect plausible evidence for life by analysis of hydrocarbons in the plume during close encounters.  相似文献   

13.
As the field of astrobiology matures and search strategies for life on other worlds are developed, the need to analyze in a systematic way the plausibility for life on other planetary systems becomes increasingly apparent. We propose the adoption of a simple plausibility of life (POL) rating system based on specific criteria. Category I applies to any body shown to have conditions essentially equivalent to those on Earth. Category II applies to bodies for which there is evidence of liquid water and sources of energy and where organic compounds have been detected or can reasonably be inferred (Mars, Europa). Category III applies to worlds where conditions are physically extreme but possibly capable of supporting exotic forms of life unknown on Earth (Titan, Triton). Category IV applies to bodies that could have seen the origin of life prior to the development of conditions so harsh as to make its perseverance at present unlikely but conceivable in isolated habitats (Venus, Io). Category V would be reserved for sites where conditions are so unfavorable for life by any reasonable definition that its origin or persistence there cannot be rated a realistic probability (the Sun, gas giant planets). The proposed system is intended to be generic. It assumes that life is based on polymeric chemistry occurring in a liquid medium with uptake and degradation of energy from the environment. Without any additional specific assumptions about the nature of life, the POL system is universally applicable.  相似文献   

14.
Understanding the abiotic fixation of nitrogen and how such fixation can be a supply of prebiotic nitrogen is critical for understanding both the planetary evolution of, and the potential origin of life on, terrestrial planets. As nitrogen is a biochemically essential element, sources of biochemically accessible nitrogen, especially reduced nitrogen, are critical to prebiotic chemistry and the origin of life. Loss of atmospheric nitrogen can result in loss of the ability to sustain liquid water on a planetary surface, which would impact planetary habitability and hydrological processes that shape the surface. It is known that NO can be photochemically converted through a chain of reactions to form nitrate and nitrite, which can be subsequently reduced to ammonia. Here, we show that NO can also be directly reduced, by FeS, to ammonia. In addition to removing nitrogen from the atmosphere, this reaction is particularly important as a source of reduced nitrogen on an early terrestrial planet. By converting NO directly to ammonia in a single step, ammonia is formed with a higher product yield (~50%) than would be possible through the formation of nitrate/nitrite and subsequent conversion to ammonia. In conjunction with the reduction of NO, there is also a catalytic disproportionation at the mineral surface that converts NO to NO? and N?O. The NO? is then converted to ammonia, while the N?O is released back in the gas phase, which provides an abiotic source of nitrous oxide.  相似文献   

15.
The putative ocean of Europa has focused considerable attention on the potential habitats for life on Europa. By generally clement Earth standards, these Europan habitats are likely to be extreme environments. The objectives of this paper were to examine: (1) the limits for biological activity on Earth with respect to temperature, salinity, acidity, desiccation, radiation, pressure, and time; (2) potential habitats for life on Europa; and (3) Earth analogues and their limitations for Europa. Based on empirical evidence, the limits for biological activity on Earth are: (1) the temperature range is from 253 to 394 K; (2) the salinity range is a(H2O) = 0.6-1.0; (3) the desiccation range is from 60% to 100% relative humidity; (4) the acidity range is from pH 0 to 13; (5) microbes such as Deinococcus are roughly 4,000 times more resistant to ionizing radiation than humans; (6) the range for hydrostatic pressure is from 0 to 1,100 bars; and (7) the maximum time for organisms to survive in the dormant state may be as long as 250 million years. The potential habitats for life on Europa are the ice layer, the brine ocean, and the seafloor environment. The dual stresses of lethal radiation and low temperatures on or near the icy surface of Europa preclude the possibility of biological activity anywhere near the surface. Only at the base of the ice layer could one expect to find the suitable temperatures and liquid water that are necessary for life. An ice layer turnover time of 10 million years is probably rapid enough for preserving in the surface ice layers dormant life forms originating from the ocean. Model simulations demonstrate that hypothetical oceans could exist on Europa that are too cold for biological activity (T < 253 K). These simulations also demonstrate that salinities are high, which would restrict life to extreme halophiles. An acidic ocean (if present) could also potentially limit life. Pressure, per se, is unlikely to directly limit life on Europa. But indirectly, pressure plays an important role in controlling the chemical environments for life. Deep ocean basins such as the Mariana Trench are good analogues for the cold, high-pressure ocean of Europa. Many of the best terrestrial analogues for potential Europan habitats are in the Arctic and Antarctica. The six factors likely to be most important in defining the environments for life on Europa and the focus for future work are liquid water, energy, nutrients, low temperatures, salinity, and high pressures.  相似文献   

16.
月面巡视器的任务层路径规划   总被引:2,自引:1,他引:1  
彭松  贾阳 《航天器工程》2010,19(5):35-42
使用巡视器对月球表面进行巡视探测是一种高效率、低成本的月球探测方法。路径规划作为巡视器的一项重要技术,通常把它作为导航系统的一部分,只考虑地形通过性的问题。实际上除了地形通过性,还有很多因素对路径选择起到决定性的作用。针对月面巡视器,在大范围区域综合考虑地形、能源、热控、通信等全局因素,给出了一种新的路径规划方法——实时贪婪(Realtime Greedy,RG)算法。运用该算法得到了任务层路径,为巡视器的导航系统提供路标点,并为巡视器的动作安排提供了依据。  相似文献   

17.
Bains W 《Astrobiology》2004,4(2):137-167
It has been widely suggested that life based around carbon, hydrogen, oxygen, and nitrogen is the only plausible biochemistry, and specifically that terrestrial biochemistry of nucleic acids, proteins, and sugars is likely to be "universal." This is not an inevitable conclusion from our knowledge of chemistry. I argue that it is the nature of the liquid in which life evolves that defines the most appropriate chemistry. Fluids other than water could be abundant on a cosmic scale and could therefore be an environment in which non-terrestrial biochemistry could evolve. The chemical nature of these liquids could lead to quite different biochemistries, a hypothesis discussed in the context of the proposed "ammonochemistry" of the internal oceans of the Galilean satellites and a more speculative "silicon biochemistry" in liquid nitrogen. These different chemistries satisfy the thermodynamic drive for life through different mechanisms, and so will have different chemical signatures than terrestrial biochemistry.  相似文献   

18.
Landis GA 《Astrobiology》2001,1(2):161-164
On Earth, life exists in all niches where water exists in liquid form for at least a portion of the year. On Mars, any liquid water would have to be a highly concentrated brine solution. It is likely, therefore, that any present-day Martian microorganisms would be similar to terrestrial halophiles. Even if present-day life does not exist on Mars, it is an interesting speculation that ancient bacteria preserved in salt deposits could be retrieved from an era when the climate of Mars was more conducive to life.  相似文献   

19.
Reproduction is a vital characteristic of life, and sex is the most common reproductive mode in the eukaryotic world. Sex and reproduction are not necessarily linked mechanisms: Sexuality without reproduction exists, while several forms of asexual reproduction are known. The occurrence of sexuality itself is paradoxical, as it is very costly in evolutionary terms. Most of the hypotheses (more than 20) attempting to explain the prevalence of sex fall into two categories: Sex either creates good gene combinations for adaptation to environments or eliminates bad gene combinations counteracting the accumulation of mutations. In spite of this apparent wealth of beneficial effects of sex, asexuality is not rare. Most eukaryotic, asexual lineages are short-lived and can only persist through the presence of sexual roots, but at least two animal groups, bdelloid rotifers and darwinulid ostracods, seem to claim the status of ancient asexuals. Research on (a)sexuality is relevant to astrobiology in a number of ways. First, strong relationships between the origin and persistence of life in extreme environments and reproductive mode are known. Second, the "habitability" of nonterrestrial environments to life greatly depends on reproductive mode. Whereas asexuals can do equally well or better in harsh environments, they fail to adapt fast enough to changing abiotic and biotic environments. Third, it has been shown that plants reproduce mainly asexually in space, and sperm production and motility in some vertebrates are hampered. Both findings indicate that extraterrestrial life under conditions different from Earth might be dominated by asexual reproduction. Finally, for exchange of biological material between planets, the choice of reproductive mode will be important.  相似文献   

20.
为了获取新型低成本Ti-Al-V-Fe合金热成形工艺窗口,研究了热加工参数为变形温度875~1100℃、应变速率0.001~1 s^-1、变形量70%的低成本Ti-Al-V-Fe合金热变形行为。结果表明:流变应力与变形温度成反比,与应变速率成正比,合金为典型负温度、正应变敏感材料。以热模拟实验数据为依据,运用多元线性回归方法,确定了材料常数与应变的函数关系,建立了基于应变量耦合的α+β两相区及β单相区Arrhennius本构方程,其耦合系数为0.98,表明建立的模型在给定任意应变量时可准确预测流变应力。根据热激活能,判别合金在不同相区软化机制,单相区为动态回复,两相区为动态再结晶。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号