首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
太阳同步回归轨道的长期演变与控制   总被引:3,自引:1,他引:3  
近地轨道的遥感卫星绝大部分都采用太阳同步回归轨道。这类轨道由于受到大气阻力的影响,半长轴将不断地衰变并导致地面轨迹的东漂,为保持回归特性需周期性地对半长轴进行调整。另一类长期变化是太阳引力引起的倾角变化,这是太阳同步轨道特有的。倾角长期的变化又进一步导致回归轨道的标称半长轴和降交点地方时的相应变化。文章给出了这些变化的解析模型以及轨道控制的策略。  相似文献   

2.
研究低轨月球卫星在月球非球形摄动和地球第三体引力摄动作用下轨道高度变化问题.首先依据Kaula准则比较分析目前国际上公认的最精确的两个重力场模型GLGM-2和LP165P,提出了在一定阶次截断重力场模型的问题,然后通过仿真不同阶次重力场模型作用下轨道高度为50km的圆形极轨道环月卫星轨道特征的变化,验证了 50km以上高度卫星非球形摄动分析时可以将重力场模型截断至一定阶次的结论,并利用截断至70阶次的重力场模型仿真得到了50km和200km圆轨道卫星无控条件下正常运行的时间.最后在仿真地球引力对200km圆轨道卫星高度影响的基础E仿真其在月球非球形和地球引力摄动作用下轨道要素变化,对低轨环月卫星轨道保持控制提供依据.  相似文献   

3.
为在倾角偏置条件下保持太阳同步轨道卫星的地面轨迹,在考虑地球扁率摄动、大气阻力摄动和太阳引力谐振等主要影响因素,以及卫星地面轨迹允许漂移范围的基础上,采用主动超调与被动控制结合的策略,提出了一种初始半长轴偏置后的卫星地面轨迹保持方法。分析了半长轴和倾角摄动变化率,以及初始半长轴和倾角偏置量对地面轨迹漂移的影响。仿真结果表明,该法可基本满足设计阶段的精度要求。  相似文献   

4.
利用理论分析、数值仿真与相图分析,论述了月球卫星冻结轨道与地球卫星冻结轨道的区别,分析结果表明,月球重力场存在较大异常,会引起月球卫星轨道发生较大漂移。月球冻结轨道在田谐项影响下,还存在中等周期的漂移。仅简单考虑带谐项系数,无法求得完美的月球冻结系数。月球重力场异常对绕月卫星的影响与地球相比存在很大区别。月球轨道卫星的长期运行与控制策略的设计,不能按照地球轨道卫星的传统方法。目前使用的月球引力模型精度较差,尽管基于这些不可靠的引力模型,可以得出很多有用结论,但对未来高精度的月球探测任务来说,还存在不足,需要在将来的月球探测任务中,探测高精度的月球重力场,以利于未来月球探测航天系统的任务分析与设计。  相似文献   

5.
雪丹  任迪  赵峭 《宇航学报》2016,37(10):1164-1170
针对人工太阳同步轨道的设计方法进行研究,通过施加法向连续推力调整升交点赤经(RAAN)变化率。首次推导了升交点赤经在变方向推力作用下的周期摄动平均值的精确计算公式,解决了已有近似方法对相关轨道参数的取值范围存在限制的问题,并给出了对应的轨道倾角周期摄动平均值计算公式。在分析J2项摄动对升交点赤经影响的基础上,给出了所需的法向连续推力幅值和一个轨道周期内对应的速度增量的计算方法。通过数值仿真,校验了计算公式的正确性,分析了实现人工太阳同步轨道的连续法向推力对轨道倾角的影响,给出了连续推力幅值随轨道参数的变化规律,并且提出了未来工程任务的应用建议。  相似文献   

6.
基于迭代修正方法的严格回归轨道设计   总被引:3,自引:0,他引:3  
通过分析太阳同步回归轨道的轨道根数和星下点经度/纬度的关系,推导了一组轨道根数的修正公式。基于高精度轨道动力学模型和升交点位置确定方法,构造了关于轨道半长轴和轨道倾角的迭代修正方法。针对偏心率矢量的动力学系统所具有的极限环特性,构造了平均法求其解析近似,从而实现冻结轨道特性对偏心率和近地点幅角的迭代修正。结合迭代修正,得到一组严格回归的轨道根数。该轨道能够重访空间目标点,具有较高的回归精度。  相似文献   

7.
针对将半长轴、升交点赤经、纬度辐角均不同的低轨微纳卫星群部署到同一轨道面不同目标相位的星座部署问题,提出一种基于Kuhn Munkres(KM)匹配的星座部署优化方法。通过KM算法实现卫星和目标纬度辐角的优化匹配,充分利用J 2摄动,使升交点赤经借助半长轴和纬度辐角的部署而得到同步修正,从而节约燃料。仿真结果表明,相比于传统部署方法,在相同约束下,优化后的部署方法使各星平均燃耗减少,各星燃耗量均衡性提高。弥补了传统同轨星座部署中将各星初始位置简化为空间一点且忽略部署过程中的升交点赤经漂移的不足。采用有限常值推力实现轨道机动,适用于携带微推力推进系统的微纳卫星。  相似文献   

8.
重点研究了考虑J2摄动作用的近圆轨道编队构形保持双脉冲最优控制策略.利用轨道要素法建立了考虑J2摄动作用影响的相对运动方程,推导了消除相对摄动影响长期项的零J2摄动条件,并利用该条件对C-W方程得到的编队初始条件进行了修正,得到了对J2摄动不太敏感的相对轨道.然后,基于C-W方程建立了编队保持双冲量最优控制模型,并利用非线性规划方法得到了编队保持所需的最优控制脉冲.仿真结果表明,J2项摄动对相对运动的破坏作用明显减小,提出的双脉冲最优控制方法能够有效实现编队保持的高精度控制.  相似文献   

9.
空间目标相对运动是空间机动的基础,所采用的研究方法是开普勒轨道的扩展与改进。将空间目标相对距离用地心角描述,建立小偏心率假设下两目标地心角表示的相对距离一阶近似解析表达式,讨论了近地轨道空间目标相对距离的周期性,相对距离变化曲线可以看作是一个缓慢变化周期曲线上的快速振荡。分析了考虑摄动影响时相对轨道倾角和轨道交点随时间的漂移,并对长期摄动影响作用下轨道交点的运动进行了分析和计算。依据上述分析,对相对运动的非开普勒特性进行了讨论。
  相似文献   

10.
针对Lambert转移轨道在考虑J2项摄动时终端位置偏差大的问题,提出了一种基于状态空间摄动法的初始速度修正方法。该方法中初始脉冲速度的主要部分根据二体Lambert变轨原理计算,J2项摄动的修正部分根据状态空间摄动法解析计算。为求得修正量,在当地水平坐标系中建立线性化摄动运动方程,并令线性系统的零输入响应和零状态响应在终端点处相互抵消,从而得到解析解。通过数值仿真验证了该方法的有效性,J2项摄动条件下的终端位置精度能够满足一般的任务要求,但其位置精度受转移时间影响较大。  相似文献   

11.
张锦绣  曹喜滨  林晓辉 《宇航学报》2006,27(4):670-675,699
提出了一种在整个轨道周期内沿轨迹向和垂直轨迹向均存在稳定基线组合的三星编队,并在考虑J2摄动基础上给出了其轨道设计方法。依据系统任务要求给出了该队形设计的约束条件,初步确定了编队的平均轨道参数。为了使得空间基线在摄动情况下保持相对稳定,对卫星平均半长轴进行了小量修正。最后在卫星工具包(STK)下进行了高精度轨道仿真验证。结果表明,该方法设计的编队初始轨道参数能使空间基线保持稳定,在一个轨道周期内,垂直轨迹方向存在两条相同的稳定基线,沿轨迹方向存在一条稳定基线和两条周期性变化基线,能够同时满足DEM和GMTI任务要求。  相似文献   

12.
大椭圆轨道上卫星编队的相对运动特性及其所受摄动力的影响给编队轨道设计者提出了新的挑战.本文总结了大椭圆轨道卫星编队的五种基本形式,利用数值积分法计算了主星轨道倾角、近地点角和平近点角初值对地球扁率作用下基本编队形式相对位置极值点漂移量的影响规律.结合零J2项摄动条件,提出基于主星平近点角初值的J2项编队相对轨道优化设计方法,进而获得瞬时根数描述的编队初始条件.仿真算例表明:优化设计结果可以明显降低大椭圆轨道编队卫星的相对漂移量,与平根数描述的编队初始条件的设计结果相比,相对距离极大值点的漂移量降低约81.8681%,验证了基于主星平近点角初值的大椭圆轨道编队优化设计方法的可行性.  相似文献   

13.
重力场测量卫星应用电推进技术   总被引:1,自引:0,他引:1  
全球重力场的精确测量对于地球物理学、卫星定轨等均有至关重要的意义。对于全球重力场测量卫星而言,其姿态和轨道的保持精度直接影响着全球重力场测量的精度。从重力场测量卫星要求出发,对卫星参数进行了假设,对重力场测量卫星采用离子推进技术的适用性进行了分析。  相似文献   

14.
谌颖  何英姿  韩冬 《航天控制》2006,24(3):35-38
本文研究近地轨道卫星长期在轨运行的轨道维持问题。轨道维持的任务是将卫星的星下点轨迹保持在设计的参考轨迹附近。近地轨道卫星所受的摄动力包括地球引力摄动、日月摄动、大气阻力摄动和光压摄动等,而影响卫星轨道星下点漂移的主要因素是大气阻力摄动。本文给出了一种新的卫星轨道维持策略,数学仿真表明了其有效性。  相似文献   

15.
文章分析了月球复杂的重力场环境对月球卫星轨道运行的影响。通过月球卫星冻结轨道与地球卫星冻结轨道的对比分析,结果表明月球重力场存在较大异常,并由此引起月球卫星轨道发生较大漂移。另外,月球冻结轨道在带谐项影响下还存在中等周期的漂移,仅简单考虑带谐项系数无法求得完美的月球冻结系数。由于月球重力场异常对绕月卫星的影响与地球轨道卫星情况相比存在很大差异,因此月球轨道卫星的长期运行与控制策略的设计必须充分考虑此影响。  相似文献   

16.
龚宇莲  何英姿  李毛毛  李克行 《宇航学报》2020,41(12):1533-1543
针对再入飞行器离轨制动问题,在考虑地球引力J2项摄动及有限推力影响下,设计了一种航天器自主离轨制动控制算法。该算法根据再入点状态约束,确定了离轨过渡轨道的平均轨道根数及其与离轨待命轨道平均轨道根数的关系,从而得到制动参数初值。通过在线数值递推轨迹,实时预报再入点瞬时轨道根数并计算再入点航迹倾角,当预报的航迹倾角满足约束条件时结束制动,并根据再入点纬度幅角误差修正制动起始点,从而修正制动参数。制动过程中,在考虑了J2项摄动影响下实时预报再入点瞬时轨道根数,依据实际任务需求确定关机时机。最后通过考虑初始状态误差、质量误差、推力误差以及姿态误差情况下的蒙特卡洛打靶仿真,分析了不同关机策略的落点散布特性,检验了该算法的自主决策和高精度再入点控制能力。  相似文献   

17.
鄢建国  李斐  平劲松 《宇航学报》2011,32(4):767-774
对美国1998年发射的月球探测器LP任务阶段共19个月的双程测距测速轨道跟踪数据进行了精密定轨,对定轨结果通过轨道残差及重复弧段差异进行了精度评价。利用LP正常任务阶段三个月的轨道跟踪数据进行了月球重力场模型解算,通过重力场功率谱、轨道残差和月球自由空气重力异常对解算模型进行了精度评价。结果表明精密定轨及月球重力场模型解算合理。对进一步融合嫦娥一号轨道跟踪数据和LP数据解算自主的高精度月球重力场模型具有参考意义。
 
  相似文献   

18.
The possibility of the uncontrolled increase of the altitude of an almost circular satellite orbit by the force of the light pressure is investigated. The satellite is equipped with a damper and a system of mirrors (solar batteries can serve as such a system). The flight of the satellite takes place in the mode of a single-axis gravitational orientation, the axis of its minimum principal central moment of inertia makes a small angle with the local vertical and the motion of the satellite around this axis constitutes forced oscillations under the impact of the moment of force of the light pressure. The form of the oscillations and the initial orbit are chosen so that the transverse component of the force of the light pressure acting upon the satellite be positive and the semimajor axis of the orbit would continuously increase. As this takes place, the orbit remains almost circular. We investigate the evolution of the orbit over an extended time interval by the method which employs separate integration of the equations of the orbital and rotational motions of the satellite. The method includes outer and inner cycles. The outer cycle involves the numerical integration of the averaged equations of motion of the satellite center of mass. The inner cycle serves to calculate the right-hand sides of these equations. It amounts to constructing an asymptotically stable periodic motion of the satellite in the mode of a single-axis gravitational orientation for current values of the orbit elements and to averaging the equations of the orbital motion along it. It is demonstrated that the monotone increase of the semimajor axis takes place during the first 15 years of motion. In actuality, the semimajor axis oscillates with a period of about 60 years. The eccentricity and inclination of the orbit remain close to their initial values.  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号