首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
轴对称结构RBCC发动机超燃模态试验和数值模拟   总被引:1,自引:0,他引:1  
为研究轴对称结构RBCC发动机超燃模态下的点火和燃烧性能,进行了地面直连试验。采用中心支板火箭与小支板组喷注相结合的方式作为点火和火焰稳定方式,并对燃料喷注方案进行了研究。试验与数值模拟结果表明,采用这种点火方式能实现轴对称结构RBCC发动机的可靠点火和稳定燃烧。二次燃料采取多级喷注的方式能充分利用流道中的氧气,实现较充分的燃烧,但应控制燃料喷注比例。双支板组的加入,能促进燃料与中心空气流的充分掺混,提升燃烧效率,获得较优的燃烧性能。  相似文献   

2.
为了改善RBCC发动机超燃模态的性能,设计了轴对称结构燃烧室结合小支板组进行燃料喷注的发动机构型.通过煤油的3步简化动力学模型,对不同燃料喷注方式下的发动机性能进行计算分析.结果表明,基于本设计的发动机,让支板火箭工作于小流量富燃状态,可实现超燃模态的可靠点火和稳定燃烧;采用一级支板结合二级壁喷的燃料喷注方式,可获得相...  相似文献   

3.
通过数值模拟发现,喷注位置前移有利于改善燃烧性能。为了更加细化探讨,在直连式实验台上进行了进一步的实验研究,研究了RBCC混合燃烧模式中燃料喷注位置对燃烧性能的影响。实验中,详细比较了相同实验条件、不同喷注位置条件下燃烧室压强及燃烧性能。实验发现,在燃烧室前端进行燃料喷注,有利于提高燃烧室压强,提高发动机比冲。可见,燃料提前喷注加强了燃料与火箭羽焰剪切层的掺混,且火箭羽焰对燃料的雾化蒸发效果更佳,使得燃料的燃烧性能得到更大提升,从而提高发动机性能。  相似文献   

4.
首先完成了一种典型DMSJ发动机流道型面和燃烧组织设计,该发动机在M_∞=4.0和6.0时的比冲分别为1 029.6 s和899.9 s。以此DMSJ发动机流道为基础,在隔离段一侧布置火箭发动机,形成RBCC发动机流道。数值模拟研究表明,低马赫数时,火箭台阶及下游流道型面变化对发动机性能影响有限;保持DMSJ发动机燃料喷注方案不变,RBCC发动机在M_∞=4.0时,冲压模态比冲可达到1 052.8 s。高马赫数时,由于燃烧组织位置靠前,必须对DMSJ发动机原有的燃料喷注方案进行调整,才能确保RBCC发动机达到与前者相当的比冲水平,经过调整本文RBCC发动机M_∞=6.0时冲压比冲达到了887.8 s。因此,基于目前较成熟的DMSJ发动机进行高马赫数RBCC发动机设计,是一条快速可行的技术途径。  相似文献   

5.
采用三维两相数值模拟技术研究火箭基组合推进(RBCC)发动机的燃烧。提出了一种新的主火箭布置方式,该方式采用多级主火箭,一级嵌入到支板之中,另一级置于燃烧室中部上壁面。研究表明,相对于常规的主火箭布局,多级主火箭布局能明显提升发动机性能。置于支板的一级火箭以恰当比工作,起到引射和改善进气道工作特性的作用;二级火箭以富燃状态工作,起到火焰稳定和促进燃烧的作用。多级火箭喷射方案是DAB和SMC模式的综合,可作为火箭引射模态改善二次燃烧一种新的方式。  相似文献   

6.
固体火箭燃气超燃冲压发动机具有高比冲、结构简单、流量易调节等优点,然而在超声速空气流的燃烧室中,如何让燃料更好地与空气掺混,增加颗粒停留时间,在较短时间内释放出更多的燃烧焓成为目前研究的重点。提出了一种基于中心支板燃气喷注的含硼固体火箭超燃冲压发动机方案,开展了模拟马赫数6.0、高度25 km来流条件下的地面直连试验和数值仿真研究,验证了该方案的合理性和优势,并获取了燃烧室内的燃烧特性,探寻了固体燃气喷注方式对燃烧室性能的影响规律。结果显示,相比于中心支板喷注方案,侧壁喷注存在总压损失大、反压激波串长度大、进气要求严苛等问题,但能够增强掺混,提高燃烧效率,缩短燃烧所需距离;而在中心支板式固体冲压发动机中,在燃烧室侧壁面引入较小流量的一次燃气,可以增大固体颗粒在燃烧室内的穿透深度,提高燃烧效率和燃烧室性能。  相似文献   

7.
针对宽范围飞行的二元中心支板式构型,采用发动机与飞行器前后体集成的全流道数值模拟计算方法,研究了主火箭混合比对RBCC引射模态超声速飞行阶段燃烧室流动燃烧及发动机性能的影响。结果表明,主火箭混合比为2.4无二次燃料喷注时,燃烧室出口气流平均总温最高,恰当比和贫燃主火箭可通过二次燃烧组织获得高于主火箭富燃工作情况下的总温,主火箭混合比影响主火箭射流温度,并通过与引射空气的掺混燃烧,与二次燃烧共同决定着燃烧室内的释热区间和压强分布情况,进而影响引射比及发动机性能;引射比随混合比的增大而增大,Ma=1.5、2时,引射比最大相差比例可达77.3%和109.0%,二次燃烧组织使得燃烧室下游压强迅速升高并前传,导致引射比迅速降低,主火箭混合比仍对引射比产生重要影响;在以亚燃和超燃模态为设计重点的受限流道内,主火箭恰当比工作可兼顾主火箭推力及燃烧室推力,进而获得更高的发动机性能,Ma=1.5、2时,推力增益分别达到22.0%和36.6%,发动机比冲分别为3 696 N·s/kg和4 136 N·s/kg,主火箭混合比对提升引射模态超声速段引射比及发动机性能具有重要影响。  相似文献   

8.
在直联式燃烧试验台上进行了基于机械壅塞的RBCC亚燃模态点火及火焰稳定研究,试验模拟飞行马赫数为2.5,采用扩张型双模态燃烧室和多级JP-10喷注方式。在主火箭工作的情况下,借助发动机出口机械壅塞的方式实现了点火和火焰稳定。同时发现火焰稳定与乙烯引导火焰无关,出口堵塞比是燃烧室压力提升的一个重要影响因素。研究工作为实现基于热力喉道的RBCC亚燃模态稳定高效燃烧提供了良好的基础。  相似文献   

9.
对固体超燃冲压发动机的模态转换现象和燃烧室工作特性开展了地面直连试验和数值模拟研究。试验在Ma=6,25 km的条件下实现燃烧模态由超燃转换为亚燃,再转换为超燃的动态变化。数值模拟获得了对应燃烧模态下发动机燃烧室的流场参数变化及工作特性。将隔离段出口马赫数作为燃烧模态判别准则,基于隔离段绝热假设计算出隔离段出口马赫数,实现发动机燃烧模态的实时判别,并通过数值模拟结果验证了该方法的可行性。试验结果表明,改变燃料喷注方式能够实现燃烧模态的变化,亚燃模态下的性能明显高于超燃模态。数值结果表明,发动机隔离段及燃烧室内激波强度和位置受到横向射流与燃烧释热的共同影响,且不同燃烧模态下影响激波的主要因素不同。发动机燃烧室工作在亚燃模态下的性能最佳,总压恢复系数为0.44,总燃烧效率为0.79。其中,亚燃模态下硼颗粒和碳颗粒的燃烧效率分别为0.78和0.65。  相似文献   

10.
随着航天推进对高效性和经济性需求的增加,人们越来越希望能够研制出高推重比和高比冲的发动机。火箭基组合循环(RBCC)发动机融合了火箭发动机和冲压式发动机的优势,成为未来航空航天领域发展的重要方向。精确而高效的燃烧组织作为其关键技术之一,对RBCC宽速域内可靠运行具有重要意义。详细综述了RBCC燃烧组织的研究现状和进展,主要涉及燃料喷注方案、燃烧模式以及热力喉道调节3个方面。具体论述了不同工作模式下燃料的喷注方案以及热力喉道的调节技术,阐述了不同燃烧模式的研究进展,分析了RBCC燃烧组织研究过程中的难点和国内外在该方面的一些经验教训,指出了当前研究工作中存在的问题,并对研究思路提出了一些建议,以期对未来RBCC燃烧组织的研究提供一定的参考。  相似文献   

11.
低速条件下引射火箭实验研究   总被引:3,自引:2,他引:3  
开展了火箭基组合循环推进在引射阶段的实验系统设计,实验系统包括以支板为特征结构形式的引射火箭试验发动机,自由射流气路系统,燃料喷注系统和压强推力数据采集系统,以固体火箭发动机作为燃气发生器,成功地进行了静态海平面零马赫状态下引射模态实验,获得了相关实验数据,同时,对相应的几何结构做了数值模拟,数值计算结果与实验结果基本吻合。  相似文献   

12.
张漫  何国强  刘佩进 《宇航学报》2008,29(5):1570-1576
扩张构型燃烧室的燃烧流动细节与放热规律是RBCC发动机设计中的核心技 术。采用湍流流动的分离涡(DES)计算方法,数值计算了RBCC燃烧室以凹腔作为火焰 稳定器的液态煤油喷雾燃烧三维两相流动。针对逐级扩张的RBCC燃烧室构型,详细研究了不 同来流状态下的喷雾燃烧流动特征以及液态煤油分级喷注的放热规律。研究表明,高来流总 温条件下,凹腔火焰稳定器可起到驻留火焰的作用,在相对较低来流总温条件下,凹腔并非 是实现火焰稳定的充分条件,必须采用其他方式补偿液态燃料蒸发吸热所损失的热量。考虑 到扩张构型的几何通道承受的压力提升范围有限,燃料喷注位置不宜安置在燃烧室上游流场 ;为了实现最大的燃烧效率以及发动机推力,采用前后级辅助喷注的方式是目前可行的解决 措施。  相似文献   

13.
为探究椭圆微扩和异形变截面这两种结构隔离段对RBCC发动机推力性能的影响,以某构型RBCC发动机试验件为研究对象,对比了地面试验与数值模拟发动机下壁面中心线上的静压分布,验证了数值模拟结果的准确性。在来流马赫数为3、余气系数为1.5的工况下,通过数值模拟对两种隔离段构型下RBCC发动机燃烧室内的流动燃烧过程及发动机的推力性能进行了对比分析。结果表明:异形变截面隔离段的抗反压性能明显低于椭圆微扩隔离段;当燃料释热较为集中,燃烧室内压升比相对较大时,异形变截面隔离段的下壁面处会产生较大的流动分离区,且一直向下游延伸,进入燃烧室,使得燃烧室入口的流场均匀性较差,从而降低发动机的推力性能。  相似文献   

14.
超燃冲压发动机的支板在高飞行马赫数下工作时,面临着非常严峻的热环境。对飞行马赫数为8时的支板热环境进行了研究,得到了前缘钝化半径与支板表面温度的关系;随后,对不同喷注总压,喷孔尺寸和喷注总温下的逆向喷注进行了数值模拟。数值模拟的结果表明,提高喷注总压和增大喷孔尺寸都有助于降低支板表面温度,在喷注总温上升到1 000 K时,逆向喷注仍然具有较好的热防护性能。  相似文献   

15.
基于某火箭基组合循环(RBCC)发动机结构及气动参数开展了飞行高度30 km、飞行速度8 Ma时,发动机纯火箭模态三维流场数值仿真.对进气道、燃烧室、尾喷管、火箭发动机等组件流场结果进行分析,并计算了发动机总体推力.结果表明:纯火箭模态下,RBCC发动机进气道存在气流分离,喉部总压恢复系数约为0.34;燃烧室存在两股气流掺混,二级进出口总压损失约38.5%;二级燃烧室流场结构复杂,使得尾喷管入口截面气流参数分布不均,其总压畸变值为0.648;纯火箭模态下该RBCC发动机轴向推力约1 700 N.  相似文献   

16.
乙烯超燃燃烧室支板/凹腔结构组合的数值研究   总被引:1,自引:0,他引:1  
以超音速燃烧冲压发动机设计为背景,采用有限体积法,以乙烯为燃料对交错尾部支板和开式凹腔的组合方式及位置进行数值研究。通过组合方式的研究发现,横向组合的凹腔内回流区卷吸作用强于纵向组合;凹腔远离交错尾部支板能促进燃烧火焰扩散,燃烧效率更高,总压损失更小。通过对组合位置的研究,总结出组合位置对燃烧室性能的影响规律,发现凹腔与支板横向组合,凹腔距支板尾缘距离为0.15 m时,总压恢复系数达到最大,燃烧效率也较高。该项研究可为超燃燃烧室设计提供参考。  相似文献   

17.
火箭引射模态下主火箭总压与RBCC发动机的匹配性   总被引:4,自引:0,他引:4  
基于传统的"等压面假设"理论,建立了RBCC发动机主火箭的引射性能分析模型,研究了主火箭总压与RBCC发动机的匹配性。研究结果表明,若隔离段通道面积比小于0.65,在主火箭总压较低条件下,隔离段内二次流容易达到壅塞,无法进一步提高空气流量;在地面静止状态下,随主火箭总压增加,空气流量逐步增大,等压面上形成Fabri壅塞后,进一步增加主火箭总压,反而会降低空气流量;在火箭引射模态下,RBCC发动机的工作状态可细分为引射作用占主导地位的进气道亚临界状态和临界状态、冲压作用占主导地位的进气道超临界状态,其分界马赫数分别约为0.7和1.5。  相似文献   

18.
介绍了采用引射火箭模式的RBCC发动机工作原理,并在对其概念设计模型进行简化的基础上,进行了RBCC发动机系统性能分析,评估了RBCC发动机系统主要设计参数(发动机系统出口截面直径和燃料化学反应后的总温)的变化对其性能(推力、推力系数和比冲)的影响,认为:1)燃料经过加热后,推力和推力增益都上升了69.97%,比冲增加了180.18%;2)随着二次燃烧过程中燃烧室温度的上升,发动机的推力、推力增益和比冲得到了很大的提高,火箭发动机的性能得到了很好的改善;3)随着RBCC发动机系统出口截面直径的增加,尾气对发动机的反推力、推力增益以及比冲急剧下降,不利于其性能的改善。  相似文献   

19.
火箭引射模态下一次火箭流量优化方法研究   总被引:4,自引:0,他引:4  
对火箭基组合循环(RBCC)发动机火箭引射模态下一次火箭流量优化方法开展了研究,并对飞行条件下一次火箭流量的变化规律进行了分析。提出了采用有效比冲作为优化目标的一次火箭流量单目标优化模型;建立了求解与一次火箭流量相匹配的二次燃料流量的比例控制方法;在考虑发动机性能优化与弹道分析耦合作用的基础上,采用试验设计和遗传算法,建立了火箭引射模态下一次火箭流量优化方法。针对空中载机发射的RBCC发动机,开展了火箭引射模态下一次火箭流量优化,并根据弹道分析结果,给出了飞行条件下一次火箭流量变化规律。结果表明,为了克服飞行过程中声障阻力,一次火箭流量在Ma=1.0附近达到最大,此时对发动机提出较高的推力设计要求;在Ma=1.5附近,来流空气的冲压作用占主导地位,一次火箭流量出现较大程度的节流,此时对发动机提出较高的比冲设计要求;超过Ma=1.5后,一次火箭以较小的流量状态维持稳定工作;火箭引射模态下一次火箭流量调节比达到了5.0。  相似文献   

20.
RBCC发动机火箭-冲压模态理想热力循环优化分析   总被引:1,自引:0,他引:1  
基于RBCC发动机工作原理,开展了特定燃烧组织模式下,RBCC发动机火箭-冲压模态的理想热力循环优化分析.根据火箭-冲压模态发动机工作特点,建立了工质热力循环过程模型,计算获得了最佳压缩点温度及其对应的最佳压缩比、最大循环功、热效率等参数.同时,给出了燃烧室最高温度、空燃比对最佳压缩比、最大循环功和热效率的影响规律,以及RBCC发动机热力循环的优化方向.研究结果表明,通过提高一级燃烧室最高温度、降低引射比、调整进气道压缩比至最佳压缩比等措施均可有效提高RBCC发动机最大循环功及循环效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号