首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are known phase-coded (two-valued or polyphase) CW radar signals that exhibit perfect periodic autocorrelation function (PACF). A PACF is perfect when all its out-of-phase autocorrelation values are identically equal to zero. This paper investigates periodic, two-valued, frequency-coded signals. While none could be found with perfect PACF, we present examples with nearly perfect PACF. Their relationship to binary phase-coded signals is also considered. These signals should be attractive for CW radars because of their simple implementation, clean spectrum, and the favorable range response of their matched receiver.  相似文献   

2.
In radar signal design it is well known that a fixed volume under the ambiguity surface representing signal energy can only be shifted but not eliminated in the delay-Doppler plane because of the constraint imposed by Woodward's total volume invariance. Rihaczek has shown that periodic signal repetition, though appealing to increased energy, increases the time-bandwidth product at the expense of introducing pronounced ambiguities in the delay-Doppler plane, and thus self-clutter is generated when signals are repeated in the time domain to increase energy. The undesirable self-clutter has a masking effect on targets in different resolution cells thereby limiting performance. An analysis is presented to show that a class of waveforms described in an earlier paper as the subcomplementary set of sequences which are basically repetitive and Hadamard coded, exhibit the property of cancelling self-clutter completely in the delay-Doppler plane if their ambiguity functions are combined. By this technique it is possible to repeat contiguously a basic waveform N times in a prescribed manner to increase signal energy and to cancel totally the resulting self-clutter by combining the ambiguity functions of N different repetitive waveforms which are Hadamard coded. A convenient matrix method to combine the ambiguity functions of subcomplementary sequences, which is an extension of known methods to derive the ambiguity function of repetitive waveforms, is presented. Radar implementation considerations and comparison of performance with various forms of linear frequency modulation (FM) are also discussed.  相似文献   

3.
High resolution radars require signals with large time-bandwidth product such as CW signal and coherent pulse train (CPT). We discuss a phase-coded interrupted CW (ICW) signal which is the combination of CW signal and CPT. Phase codes used here are with perfect periodic autocorrelation. The periodic ambiguity function of ICW signals is studied including single-carrier signal and multi-carrier signal. It is interesting that the gate function has different effects on two signals and contributes to a multi-carrier ICW signal which yields nearly perfect autocorrelation. Meanwhile we also suggest an efficient receiver approach to ICW signals, which can reduce the computational burden of the processor and utilize the good properties of P3 and P4 codes.  相似文献   

4.
Since no practical method is available for synthesizing radar waveforms, a sizable effort has been directed into studies of the matched-filter response, or ambiguity function, of many waveforms. In this paper, we investigate the class of FM signals whose instantaneous frequency varies in a zigzag pattern. The waveforms thus consist of linear FM segments and are relatively easy to generate and process. The paper discusses the relation between the characteristics of the waveform and the features of the associated ambiguity function. The effects studied include those of signal repetition, changes in the FM slope, phase-shift and frequency-shift coding, and staggering of frequency step and segment duration. Ambiguity functions of interesting waveforms illustrate the general results. These ambiguity functions are computer-plotted projections of the three-dimensional surface above the delay-Doppler plane.  相似文献   

5.
Continuous wave (CW) signals phase modulated by a periodic waveform, and their corresponding receivers, are discussed. The combined response in delay and Doppler is almost identical to the (ideal) response of the coherent pulse train. The receivers are matched to an integral number N of modulation periods of the transmitted signal. CW implies a duty cycle of 100%. However, the signal duration need not be longer than N+2 periods. The CW signals have the advantage that their peak power is equal to the average power. Their disadvantages are more complicated receiver processing and the need for two antennas  相似文献   

6.
A new test method to measure the amplitude noise and phase noise in both CW and pulsed CW signals of a Ku-band pulsed Doppler radar is described. These noises are measured in a simulated environment of radar operation; thus the test results may give direct information to determine radar subclutter visibility. In comparison with the conventional noise test method, this new method not only gives more meaningful results but also can obtain results much faster in testing. Actual test system design is described by block diagrams and theoretical analysis. A method to determine approximate frequency jitter in a transmitter signal is also described.  相似文献   

7.
A periodic ambiguity function (PAF) is discussed which describes the response of a correlation receiver to a CW signal modulated by a periodic waveform, when the reference signal in the receiver is constructed from an integral number N, of periods T, of the transmitted signal. The PAF is a generalization of the periodic autocorrelation function, to the case of non-zero Doppler shift. It is shown that the PAF of N periods is obtained by multiplying the PAF of a single period by the universal function sin(Nπν T)/N sin(πνT), where ν is the Doppler shift, to phase-modulated signals which exhibit perfect periodic autocorrelation when there is no Doppler shift. The PAF of these signals exhibits universal cuts along the delay and Doppler axes. These cuts are functions only of t, N and the number M, the modulation bits in one period  相似文献   

8.
Digitally coded radar waveforms can be used to obtain large time-bandwidth products (pulse compression ratios). It is demonstrated that periodic radar waveforms with zero sidelobes or almost zero sidelobes can be defined. A perfect periodic code is a periodic code whose autocorrelation function has zero sidelobes and whose amplitude is uniform (maximum power efficiency=1). An asymptotically perfect periodic code has the property that as the number of elements in the code goes to infinity the autocorrelation function of the code has zero sidelobes and its power efficiency is one. The authors introduce a class of radar waveforms that are either perfect or asymptotically perfect codes. These are called reciprocal codes because they can be derived through a linear transformation of known codes. The aperiodic performance of the reciprocal code is examined  相似文献   

9.
雷达在其发展前期,连续波雷达由于收发隔离等问题不易解决,应用受限制。但是随着技术的发展,这些问题得到改善,连续波雷达越来越受到人们的关注。文章针对现有调频连续波雷达平台,通过分析研究雷达平台,介绍信号处理软件的设计思路与系统结构,设计与开发了信号处理软件。在此基础上,对雷达功能设计实现进行分析,对软件各模式功能进行实验测试,验证了其功能实现及测量精度,并进一步研究调频连续波雷达毫米波雷达用于导弹近程制导的可行性,介绍了调频连续波毫米波雷达的性能,指出其用于末端制导的缺陷并给出改善方法。  相似文献   

10.
One of the best known weakness of radar sensors in defense and security applications is the necessity to radiate a signal, which can be detected by the target, so being possible (easy in fact) that the target is alerted about the presence of a radar before the radar is alerted about the presence of a target. In this context, Low Probability of Interception (LPI) Radars try to use signals that are difficult to intercept and/or identify. Spread spectrum signals are strong candidates for this application, and systems using special frequency or polyphase modulation schemes are being exploited. Frequency hopping, however, has not received much attention. The typical LPI radar at this moment of the technology is a CW-LFM radar. The simplicity of the technology is its best point. Polyphase codes, on the other hand have the inherent advantage of high instantaneous bandwidth regardless of observation time. But the complexity of the hardware is also higher. FH signals have traditionally been considered of lower performance but higher complexity, due to the difficulties to compensate the individual dopplers for the individual range cells in the receiver. One important point is that an FH radar must be clearly distinguished from an agile frequency radar. In the latter, a pulsed signal is transmitted using different frequencies from pulse to pulse. In an FH radar the frequency changes must be during the pulse. In fact, in an LPI FH radar, a CW frequency hopped signal is used. A radar system concept is proposed in which it shows how these problems can be overcome in a tracking application. Also, the signal format is analyzed under the scope of future decade digital interceptors, showing that, in fact, this kind of signal exhibits improvement in some performances and requires a hardware that is only slightly more complex than that needed for CW-LFM systems  相似文献   

11.
Electrooptical systems exist which can make use of the available bandwidth and directivity at optical frequencies without utilizing the coherence aspects of lasers. Development of a sensitive, very highspeed (microwave response) photoelectric detector which can function as a high-gain microwave amplifier and mixer is described. Sysyems are described for radar, communications, and reconnaissance purposes. Basic noise considerations are shown. CW and FM-CW optical range and range rate tracking systems are described in which the required detection bandwidth is not a direct function of the range resolution, allowing highly accurate range and range rate determination at low signal levels. Communication systems utilizing noncoherent carriers, microwave subcarriers, and the dynamic crossed field electron multiplier as the detector-amplifier-mixer are described.  相似文献   

12.
基于周期FRFT的多分量LFMCW雷达信号分离   总被引:1,自引:0,他引:1  
黄宇  刘锋  王泽众  向崇文  邓兵 《航空学报》2013,34(4):846-854
 多分量线性调频连续波(LFMCW)信号的截获和特征提取是雷达情报侦察的难点,为了实现对多分量LFMCW信号的快速检测和有效分离,提出了一种基于周期分数阶Fourier变换(PFRFT)的多分量LFMCW雷达信号分离新方法。首先介绍了PFRFT,分析了PFRFT和FRFT之间的关系,讨论了LFMCW信号的PFRFT特征。然后给出了一种离散PFRFT的计算方法,结合周期分数阶Fourier域(PFRFD)的窄带滤波和CLEAN算法实现了多分量LFMCW信号的分离。仿真结果表明:①PFRFT的计算效率较周期Wigner-Hough变换(PWHT)具有明显优势;②LFMCW信号分量在特定PFRFD中具有能量峰值,分离后能较好保留时频特征;③当两个LFMCW信号分量的功率相差较大时,适合在PFRFD分离,反之适合在时域分离;④当信噪比(SNR)为0 dB时,两个具有相同功率的LFMCW信号分量分离后,与初始信号分量的相关系数都达到了0.9以上。  相似文献   

13.
Mismatched filtering of odd-periodic binary sequences   总被引:2,自引:0,他引:2  
Binary sequences with perfect periodic autocorrelation functions, as required in communications, radar, and measuring, are not known for any lengths >4. As a possible remedy, mismatched filtering can be used to entirely suppress any sidelobes of the periodic autocorrelation function at the expense of a reduced signal-to-noise ratio (SNR). In this work, the mismatched filtering method is extended to the odd-periodic autocorrelation function whose technical implementation is no more complex than that of periodic sequences. A new class of odd-periodic binary sequences is constructed that exist for many more lengths and exhibit significantly lower mismatched filtering losses than any known periodic sequences  相似文献   

14.
Development of random signal radar (RSR) over the past 30 years is described. Conventional methods of implementing RSR are summarized such as correlation, spectrum analysis, and anticorrelation. Some typical RSR systems are introduced, for example, noise frequency modulation CW radar, random binary phase-coded CW radar, etc., and their merits and demerits are also pointed out. Finally, RSR development trends are analyzed  相似文献   

15.
为提高雷达侦察截获接收机对多相编码连续波弱信号截获能力,提出了一种基于周期Wigner-Hough变换(Periodic Wigner-Hough Transform,PWHT)的多相编码连续波信号检测算法。研究了线性调频连续波信号的PWHT及性质;分析了多相编码连续波信号时频主脊线的类似线性调频连续波特征;推导了高斯白噪声在PWHT域的统计分布特征,根据多相编码连续波信号与线性调频连续波的相似性,提出了基于PWHT的多相编码连续波信号检测算法,给出了实现流程,并计算出其检测性能和参数估计性能仿真的仿真结果。仿真结果表明:该算法较已有的其他多相编码信号检测算法有更好的弱信号检测能力,最小可检测信噪比至少可以降低3dB,并随着观测时间延长而进一步降低;其参数估计精度具有渐进最优的性质。  相似文献   

16.
A common problem in waveform design is to adapt the transmitted signal to the target environment in order that the interference from extended fields of scatterers is reduced. This problem is investigated here for the special case of detection of a single target in the ``vicinity' of an extended clutter space. The paper considers the possibility of confining the matched-filter response in delay and Doppler, or ambiguity function, to a narrow strip with arbitrary orientation in the delay-Doppler plane. It is shown that strict confinement of the response is achievable only with waveforms that are unlimited in both time and frequency domain. With practical waveforms, which are necessarily of finite extent, one merely can trade close-target separability against detectability in the background clutter. Thus, one form of the resolution problem is exchanged against the other. The paper examines these effects quantitatively.  相似文献   

17.
Radio interference generated in a helicopter-borne continuous wave (CW) Doppler radar system due to the rotating blades is analyzed. This problem has been previously treated for the case of pulse Doppler radar systems with very narrow (near zero) beamwidth. In this case the strong interference component returning directly from the blades (with no ground reflection) need not be considered as it reaches the receiver when it is still blinded. In the case of a CW Doppler radar, however, this interference component must be included. Numerical calculations show that the total blade interference power level, dominated by the direct component, is higher than that of the direct ground clutter in the radar clutter region. It decreases approximately as (f - fo)-4 in the radar clear region. It stays, however, well above the thermal noise level which might cause false alarm and degrade the radar performance.  相似文献   

18.
Although the properties of the linear FM signal have been studied previously in considerable detail, such studies have involved rather narrow aspects of the theory. This paper extends the work in several respects. By presenting three-dimensional projections of the conventional ambiguity function of the linear FM signal in more detail than was available before, we can study the sidelobe behavior off as well as on the axes, without weighting, with unilateral weighting in the receiver, and with bilateral weighting. These plots reveal interesting properties related to the signal symmetry in time and frequency. The matched-filter response is then extended to include Doppler distortions of the modulation function. The results show that Woodward's ambiguity function is valid only for signals with relatively modest sophistication, even though in most practical situations one is interested only in those undistorted parts of the matched-filter response in the vicinity of the delay axis. Plots of the response are presented for various degrees of distortion, for signals with and without weighting. Lastly, we consider the effects of a mismatch in range acceleration, again for the various cases of interest. The results convey a thorough insight into the properties of chirp radar under a broad range of operational conditions.  相似文献   

19.
黄宇  刘锋  王泽众  向崇文 《航空学报》2013,34(2):393-400
 特征分析是雷达信号分选识别的基础,利用稀疏分解思想对新体制雷达信号进行特征提取是一个新的研究方向。本文以分数阶Fourier变换的核函数作为稀疏分解的chirp基函数,将具有相近特征参数的chirp基函数构成基函数族用于稀疏分量提取,推导了在分数阶Fourier域基于匹配跟踪的chirp基函数族稀疏分解公式,然后利用chirp基稀疏分量的调频率和初始频率构成特征参数序列,将雷达信号脉冲分成5大类进行分选和识别,仿真分析验证了推导结果的有效性。结果表明对于具有线性或曲线时频特征的雷达信号在信噪比为-3 dB,采样频率为500 MHz,观测时间为2 μs,调频率不超过100 MHz/μs时,仍然具有95%的正确分选概率。  相似文献   

20.
求解3R定位系统的最佳目标一雷达站几何是CW雷达定位体制研究中的关键问题之一。这种最佳几何是3个雷达天线位于正三角形的顶点,3个天线波束在空间正交。给出了利用最优化方法求解这种最佳几何的目标函数,并给出了3R定位体制的普适性误差椭球的二次曲面方程。研究结果表明,在上述最佳目标一雷达站几何下,椭球形误差二次曲面变为圆球形误差二次曲面。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号