首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Since no practical method is available for synthesizing radar waveforms, a sizable effort has been directed into studies of the matched-filter response, or ambiguity function, of many waveforms. In this paper, we investigate the class of FM signals whose instantaneous frequency varies in a zigzag pattern. The waveforms thus consist of linear FM segments and are relatively easy to generate and process. The paper discusses the relation between the characteristics of the waveform and the features of the associated ambiguity function. The effects studied include those of signal repetition, changes in the FM slope, phase-shift and frequency-shift coding, and staggering of frequency step and segment duration. Ambiguity functions of interesting waveforms illustrate the general results. These ambiguity functions are computer-plotted projections of the three-dimensional surface above the delay-Doppler plane.  相似文献   

2.
Golay's complementary pairing has been a method to increase the utility of binary sequences, because of the temporal sidelobe suppression in the autocorrelation vector summation. Complementary sets of Tseng and Liu and of Hollis exhibit the same effect when several autocorrelations are combined. These complementary pairs and sets of sequences can be extended into long complementary chains by a simple transformation. This transformation is extended here to all pulse compression waveforms. By this method, even though analog complementary sequences cannot be formed, a new class of waveforms, called subcomplementary waveforms, can be formed. Following these rules, repetition of waveforms such as linear frequency modulation (LFM) or linear stepped frequency modulation (LSFM) in a prescribed manner is possible without creating autocorrelation grating lobes or repetitive sidelobes. This method is equally applicable to all analog or digital pulse compression waveforms.  相似文献   

3.
A common problem in waveform design is to adapt the transmitted signal to the target environment in order that the interference from extended fields of scatterers is reduced. This problem is investigated here for the special case of detection of a single target in the ``vicinity' of an extended clutter space. The paper considers the possibility of confining the matched-filter response in delay and Doppler, or ambiguity function, to a narrow strip with arbitrary orientation in the delay-Doppler plane. It is shown that strict confinement of the response is achievable only with waveforms that are unlimited in both time and frequency domain. With practical waveforms, which are necessarily of finite extent, one merely can trade close-target separability against detectability in the background clutter. Thus, one form of the resolution problem is exchanged against the other. The paper examines these effects quantitatively.  相似文献   

4.
In many detection and estimation problems, Doppler frequency shifts are bounded. For clutter or multipath that is uniformly distributed in range and symmetrically distributed in Doppler shift relative to the signal, detectability of a point target or a communication signal is improved by minimizing the weighted volume of the magnitude-squared autoambiguity function. When clutter Doppler shifts are bounded, this volume is in a strip containing the range axis on the range-Doppler plane. For scattering function estimation, e.g., for weather radar, Doppler flow meters, and distributed target classifiers, it is again relevant to minimize ambiguity volume in a strip. Strip volume is minimized by using a pulse train, but such a signal has unacceptably large range sidelobes for most applications. Other waveforms that have relatively small sidelobe level within a strip on the range-Doppler plane, as well as small ambiguity volume in the strip, are obtained. The waveforms are composed of pulse pairs that are phase modulated with Golay complementary codes.  相似文献   

5.
It is shown that signal waveforms utilizing discrete frequency modulation (DFM) which are generated using a narrowband or frequency shift algorithm have ambiguity sidelobe distortion which is caused by the approximation of time compression by frequency shift. A logarithmic frequency allocation algorithm is presented which couches the signal design problem in terms of band and step ratios, rather than in terms of bandwidth and frequency steps, and is consistent with the wideband formulation of the ambiguity function. The algorithm makes use of the same basic code generating sequence used for narrowband frequency allocation, but the resulting signal will have invariant ambiguity sidelobe positions for any receiver realization in the delay-time compression plane.  相似文献   

6.
The matched filter ambiguity function is presented for a burst waveform composed of repeated subbursts, each one of which consists of N pulses in which the phase is varied quadratically from pulse to pulse. The resulting ambiguity function exhibits small residual ambiguities along the delay axis separated by the reciprocal of the pulse repetition frequency (PRF). A cross-ambiguity function is derived which reduces these ambiguities to zero amplitude. A third cross-ambiguity function is presented for a receiver matched to a generalized Hamming weighted repeated quadratic burst. The location in the delay/Doppler plane of the waveform ambiguities for these waveforms is compared with that of an uncoded pulse burst.  相似文献   

7.
CW radar signals and processors are discussed. The use of the periodic ambiguity function (PAF) to analyze the delay-Doppler performance of CW signals and their corresponding correlation receivers, is extended to include weight function effects. This work provides tools which can predict the delay-Doppler response of almost any phase-coded CW radar. Examples demonstrate that a combination of CW signals having perfect periodic autocorrelation, a matched reference signal with a large number of modulation periods and a smooth weight function, can create a delay-Doppler response with extremely low sidelobes, strongly resembling the response of a coherent pulse train  相似文献   

8.
The research reported herein deals with the general problem of the selection of radar waveforms. The investigation is specifically concerned with the synthesis of radar signals which are optimum in the sense that they are characterized by ambiguity surfaces minimized over certain predetermined regions of the ambiguity plane. The weighted ambiguity surface is utilized as the weighted error criterion. This error criterion is mathematically tractable and pertinent to radar system performance but is not unduly restrictive as some orientation parameters are left unspecified for subsequent cost or penalty function analysis. The signal optimization is approached by variational techniques augmented by equality and inequality constraints, for example, limiting the amount of bandwidth or frequency modulation to be less than some system requirement. Several examples are presented demonstrating the optimization techniques and providing a minimum error for the stated problem. It is shown that for any given type of amplitude modulation of the radar signal, the variance or dispersion of the ambiguity surface is not decreased for any type of phase modulation added. The optimum signal for an elliptical weighting function is derived for several cases. The minimum error is shown to depend upon the constraints and the unspecified orientation parameters and, for one case, on the second moment of the signal.  相似文献   

9.
On the Ambiguity Function of Random Binary-Phase-Coded Waveforms   总被引:1,自引:0,他引:1  
The ambiguity function of truly random binary-phase-coded waveforms, as an approximation to those waveforms commonly employed in binary-modulated pseudonoise systems/encoded radar systems, is investigated. In a statistical sense, the ambiguity function is analytically derived in which the normally used deterministic cross-correlation process is replaced by its ensemble average. Various Doppler filter responses are presented and discussed. The results are compared with those obtained by transmitting an aperiodic maximum length pseudorandom sequence. It is shown that the ambiguity function of the latter case is closely represented by the ensemble-average response of the truly random binary signal.  相似文献   

10.
It is shown that the volume under the wideband ambiguity function is close to the square of the signal energy. The ambiguity volume is asymptotically conserved as the signal approaches the narrowband case. The narrowband ambiguity volume is a lower bound for the volume of the wideband ambiguity function.  相似文献   

11.
Echoes from complex targets due to chirp waveforms show different time responses for different chirp rates, because of the ambiguity of range and radial velocity information. A graphical method is described which enables the derivation of the time response for an arbitrary chirp rate when the scattering cross-section distribution in the range and radial velocity plane is known for complex targets. The graphical method can also be used to generate an approximately realistic scattering cross-section distribution when the time responses for two different chirp rates are given. An example is shown which applies to the computer simulation of the radar echo from a waking reentry space vehicle.  相似文献   

12.
In many radar systems, efficient use of transmitter power requires the transmission of a constant-amplitude signal for a substantial fraction of time; for a monotonic transmission, however, the range resolution is restricted by the length of the transmitted pulse. Linear frequency modulation removes this constraint for targets with negligible, or known, radial velocities; it is not suitable, however, for simultaneous observations of range and radial velocity (Doppler shift). This paper describes a class of waveforms suitable for simultaneous measurement of range and Doppler shift. These waveforms are characterized by a uniform distribution in frequency and by pseudorandom frequency changes. Uniform frequency distribution is attained by a uniform spacing of frequencies with each frequency present for an identical length of time. Frequency changes are effected by sequencing the frequencies with a pseudorandom number generator. Ambiguity functions are computed for pseudorandom frequencymodulated waveforms designed for ionospheric backscatter studies. By suitable choice of parameters, the ambiguity function becomes a narrow central peak surrounded by a plateau whose height varies randomly between zero and approximately twice its average. Waveform generation by means of a digital frequency synthesizer and data reconstruction considerations are described.  相似文献   

13.
Staggered Costas Signals   总被引:1,自引:0,他引:1  
A radar signal, based on coherent processing of a train of staggered Costas bursts, is suggested and investigated. The selection of sequences of each burst is based on a minimum number of collocation of their individual ambiguity function sidelobe peaks. The resulting ambiguity function combines qualities of both "thumbtack" and "bed of nails" signals. Comparison with linear-FM, V-FM, and complementary phase coded (CPC) signals is given, as well as comparison with hybrid signals consisting of both phase and frequency coding.  相似文献   

14.
Transmit Beamforming for MIMO Radar Systems using Signal Cross-Correlation   总被引:2,自引:0,他引:2  
Proposed next-generation radar systems will have multiple transmit apertures with complete flexibility in the choice of the signals transmitted at each aperture. Here we propose the use of multiple signals with arbitrary cross-correlation matrix R, and show that R can be chosen to achieve or approximate a desired spatial transmit beampattern. Two specific problems are addressed. The first is the constrained optimization problem of finding the value of R which causes the true transmit beampattern to be close in some sense to a desired beampattern. This is approached using convex optimization techniques. The second is the problem of designing multiple constant-modulus waveforms with given cross-correlation R. The use of coded binary phase shift keyed (BPSK) waveforms is considered. A method for finding the code sequences based on random signaling with a structured correlation matrix is proposed. It is also shown that by restricting the class of admissible waveforms one reduces the set of possible signal correlation matrices.  相似文献   

15.
ANALYSISOFTHERETURNEDSIGNALMODELINBISTATICRADARSYSTEMSYinChengyou,XuShanjia,WangDongjin,ZhouLinyun(DepartmentofElectronicEngi...  相似文献   

16.
The conventional ambiguity function is extended to include the Doppler distortions of the modulation function. The distinctive features of the extension are the use of the complex notation for wideband signals, and inclusion of the Doppler effect on the signal amplitude. The result is an ambiguity function from which Woodward's form can be found by inspection. It is shown that the well-known volume constraint also applies, in unchanged form, to the generalized ambiguity function. For the volume to be constant, it is not required that the distortions of the modulation function be neglected. Rather, the volume constancy is related to the sinusoidal fluctuations of a modulated carrier-type signal and thus is strictly a matter of the percentage bandwidth of the signal.  相似文献   

17.
A general systematic procedure is described for computing the Fourier transform and the ambiguity function of waveforms that are piecewise polynomial. The procedure can be implemented by hand or programmed for execution by a digital computer. The main advantage of the technique is that integration is replaced by a finite summation. Examples include the computation of characteristic function, moments, and the ambiguity function of an amplitude modulated linear FM signal.  相似文献   

18.
Novel waveforms are described that have low sidelobes when individual or multiple waveforms are approximately processed. They are related to orthogonal matrices that may be associated with complementary sequences and also with periodic waveforms having autocorrelation functions with constant zero-amplitude sidelobes. Also described are sets of sequences whose cross-correlation functions sum to zero everywhere. A potential application is the elimination of ambiguous range stationary clutter  相似文献   

19.
A method is presented for choosing the zero pattern of the z transform of a Huffman (impulse-equivalent) sequence so that the energy of the sequence is large for a given peak amplitude. The scheme applies to real and complex Huffman sequences. Illustrative examples are given and the ambiguity functions of the synthesized signals are shown.  相似文献   

20.
Acquisition in a communication receiver is the operation of determining the arrival time of a transmitted periodic timing marker. This is generally accomplished by sending a known acquisition waveform to aid in the arrival time measurement. Certain classes of waveforms are called rapid acquisition waveforms and are advantageous for reducing the time to acquire when sequential methods are used. A multiple-access acquisition environment occurs when a multiplicity of transmitter-receivers are attempting to each individually perform an acquisition operation, each pair interfering with all others. In this paper, a study is made of the interference effects when rapid acquisition techniques are used in a multiple-access environment. The prime object is to determine the manner in which the actual acquisition waveform structure effects the overall system performance. When interference variance is used as a criterion, it is shown that rapid acquisition waveforms made up of component waveforms having disjoint, flat, wideband spectra produce minimal interference. The result suggests the use of coded tone acquisition waveforms. The results have primary application to ranging, surveillance, or navigation operations performed in a many-user situation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号