首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Intra-system biases (ISBs) between BDS-2 and BDS-3 are of critical importance when combining observations from the BDS-2 and BDS-3 systems, which is meaningful to fully take advantage of the BDS positioning capability. Meanwhile, ISBs should also be considered in the estimation of BDS uncalibrated phase delays (UPDs). In this research, we present a BDS-2/BDS-3 joint-processing scheme, as well as a method for estimating BDS UPDs. The characteristics of ISBs and the quality of BDS UPDs are analyzed based on 30-day data from 130 multi-GNSS experimental (MGEX) stations. Our results indicate that the ISBs are related to the type and version of the receiver. The ISBs can be regarded as constant across the course of a given day, and the mean standard deviation (STD) values of ISBs over one month for different types of receivers are generally within 0.2 m. Moreover, to assess the quality of UPD products, the residuals of the estimated UPDs and the utilization rates of the observation data are computed. The results show that the quality of BDS UPDs can be improved by correcting the satellite-induced pseudo-range variations, and by estimating the wide-lane (WL) UPD difference between BDS-2 and BDS-3. The average RMS values of the estimated residuals of WL UPD and narrow-lane (NL) UPD are 0.07 and 0.09 cycles, respectively; moreover, the utilization rate of the observation data of WL UPD and NL UPD can reach above 90 %. The performance of BDS precise point positioning (PPP) and PPP ambiguity resolution (PPP-AR) is analyzed in terms of positioning accuracy and convergence performance in both the static and kinematic modes. Compared with PPP ambiguity-float solutions, the positioning accuracy of PPP-AR is significantly improved, especially in the east direction. The impact of ISBs on PPP and PPP-AR is also analyzed, and the results indicate that ISBs can improve the convergence speed of float PPP, but can be disregarded in PPP-AR.  相似文献   

2.
Integer ambiguity resolution at a single station can be achieved by introducing predetermined uncalibrated phase delays (UPDs) into the float ambiguity estimates of precise point positioning (PPP). This integer resolution technique has the potential of leading to a PPP-RTK (real-time kinematic) model where PPP provides rapid convergence to a reliable centimeter-level positioning accuracy based on an RTK reference network. Nonetheless, implementing this model is technically subject to how rapidly we can fix wide-lane ambiguities, stabilize narrow-lane UPD estimates, and achieve the first ambiguity-fixed solution. To investigate these issues, we used 7 days of 1-Hz sampling GPS data at 91 stations across Europe. We find that at least 10 min of observations are required for most receiver types to reliably fix about 90% of wide-lane ambiguities corresponding to high elevations, and over 20 min to fix about 90% of those corresponding to low elevations. Moreover, several tens of minutes are usually required for a regional network before a narrow-lane UPD estimate stabilizes to an accuracy of far better than 0.1 cycles. Finally, for hourly data, ambiguity resolution can significantly improve the accuracy of epoch-wise position estimates from 13.7, 7.1 and 11.4 cm to 0.8, 0.9 and 2.5 cm for the East, North and Up components, respectively, but a few tens of minutes is required to achieve the first ambiguity-fixed solution. Therefore, from the timeliness aspect, our PPP-RTK model currently cannot satisfy the critical requirement of instantaneous precise positioning where ambiguity-fixed solutions have to be achieved within at most a few seconds. However, this model can still be potentially applied to some near-real-time remote sensing applications, such as the GPS meteorology.  相似文献   

3.
The quality and availability of Uncalibrated Phase Delay (UPD) solutions are crucial to the Precise Point Positioning (PPP) service, and the long-term temporal variability and its contributing factors should be better understood. In this paper, we comprehensively investigate the long-term time-varying characteristics of each UPD product respectively generated by a global and regional network and their interoperable application in PPP-AR (ambiguity resolution), the sampling of the WL and NL UPDs are daily and 30 s, respectively. Firstly, in terms of our 30 day Wide-Lane (WL) UPD products of 31 satellites, the Standard Deviation (STD) of each satellite WL UPDs ranges from 0.04 to 0.06 cycles, indicating that the long-term prediction accuracy of satellite WL UPD is sufficient for fixing Wide-Lane ambiguities. Secondly, when a satellite in eclipsing the discontinulity may corrupt the determination of Narrow-Lane (NL) UPD in form of offset, as a result of lacking or poor satellite attitude dynamic modeling. When the influence of discontinuity is removed, the STD of our estimated satellite NL UPDs is less than 0.05 cycles. Thirdly, the STD of our estimated receiver WL UPDs is mainly below 0.2 cycles, which implies that its stability is one order poorer that of the satellite. In addition, if they are used for stations in and around the network covered region, the stability of the UPD products from the CMONOC (Crustal Movement Observation Network of China) is better than that from a global network, benefit from the fact that all the CMONOC stations are equipped with the same receiver type. Finally, the PPP-AR results show that a rate of 82.9% for stations with a WL-ambiguity-fixed rate of over 90% while 69.5% for stations with an NL-ambiguity-fixed rate of over 80% can be achieved when using UPD from the global network, which is worse than that of using UPD from the CMONOC (85.7% for stations with a WL-ambiguity-fixed rate of over 90% while 75% for stations with an NL-ambiguity-fixed rate of over 80%). The results of the experiment on the UPD interoperable application in PPP show that the global network UPD products can provide a fast AR at any single station, and the convergence time is well below 25 min. Particularly, when the location of a station is in and around the regional network, our results show that the PPP results obtained using regional UPDs enable the consistent use of global UPDs. When the location of a station is far away from the regional network, using the regional UPDs can not achieve PPP-AR. Finally, the WL UPDs of the previous day is used for forecasting to estimate the NL UPDs, the stability analysis results of NL UPDs solution and positioning results are demonstrate the validity of forecasted UPD products.  相似文献   

4.
Integer ambiguity resolution in precise point positioning (PPP) can shorten the initialization and re-initialization time, and ambiguity-fixed PPP solutions are also more reliable and accurate than ambiguity-float PPP solutions. However, signal interruptions are unavoidable in practical applications, particularly while operating in urban areas. Such signal interruptions can cause discontinuity of carrier phase arc, which introduces new integer ambiguities. Usually it will take approximately 15 min of continuous tracking to a reasonable number of satellites to fix new integer ambiguities. In many applications, it is impractical for a PPP user to wait for such a long time for the re-initialization. In this paper, a method for rapid ambiguity fixing in PPP is developed to avoid such a long re-initialization time. Firstly, the atmospheric delays were estimated epoch by epoch from ambiguity-fixed PPP solutions before the data gap or cycle slip occurs. A random walk procedure is then applied to predict the atmospheric delays accurately over a short time span. The predicted atmospheric delays then can be used to correct the observations which suffer from signal interruptions. Finally, the new ambiguities can be fixed with a distinct WL-LX-L3 (here LX denotes either of L1, L2) cascade ambiguity resolution strategy. Comprehensive experiments have demonstrated that the proposed method and strategy can fix zero-difference integer ambiguities successfully with only a single-epoch observation immediately after a short data gap. This technique works even when all satellites are interrupted at the same time. The duration of data gap bridged by this technique could be possibly extended if a more precise atmospheric delay prediction is found or on-the-fly (OTF) technology is applied. Based on the proposed method, real-time PPP with integer ambiguity fixing becomes more feasible in practice.  相似文献   

5.
Integer ambiguity fixing with uncalibrated phase delay (UPD) products can significantly shorten the initialization time and improve the accuracy of precise point positioning (PPP). Since the tracking arcs of satellites and the behavior of atmospheric biases can be very different for the reference networks with different scales, the qualities of corresponding UPD products may be also various. The purpose of this paper is to comparatively investigate the influence of different scales of reference station networks on UPD estimation and user ambiguity resolution. Three reference station networks with global, wide-area and local scales are used to compute the UPD products and analyze their impact on the PPP-AR. The time-to-first-fix, the unfix rate and the incorrect fix rate of PPP-AR are analyzed. Moreover, in order to further shorten the convergence time for obtaining precise positioning, a modified partial ambiguity resolution (PAR) and corresponding validation strategy are presented. In this PAR method, the ambiguity subset is determined by removing the ambiguity one by one in the order of ascending elevations. Besides, for static positioning mode, a coordinate validation strategy is employed to enhance the reliability of the fixed coordinate. The experiment results show that UPD products computed by smaller station network are more accurate and lead to a better coordinate solution; the PAR method used in this paper can shorten the convergence time and the coordinate validation strategy can improve the availability of high precision positioning.  相似文献   

6.
Integer ambiguity resolution in Precise Point Positioning (PPP) can improve positioning accuracy and reduce convergence time. The decoupled clock model proposed by Collins (2008) has been used to facilitate integer ambiguity resolution in PPP, and research has been conducted to assess the model’s potential to improve positioning accuracy and reduce positioning convergence time. In particular, the biggest benefits have been identified for the positioning solutions within short observation periods such as one hour. However, there is little work reported about the model’s potential to improve the estimation of the tropospheric parameter within short observation periods. This paper investigates the effect of PPP ambiguity resolution on the accuracy of the tropospheric estimates within one hour.  相似文献   

7.
Obtaining reliable GNSS uncalibrated phase delay (UPD) or integer clock products is the key to achieving ambiguity-fixed solutions for real-time (RT) precise point positioning (PPP) users. However, due to the influence of RT orbit errors, the quality of UPD/integer clock products estimated with a globally distributed GNSS network is difficult to ensure, thereby affecting the ambiguity resolution (AR) performance of RT-PPP. In this contribution, by fully utilising the consistency of orbital errors in regional GNSS network coverage areas, a method is proposed for estimating regional integer clock products to compensate for RT orbit errors. Based on Centre National d’Études Spatiales (CNES) RT precise products, the regional GPS/BDS integer clock was estimated with a CORS network in the west of China. Results showed that the difference between the estimated regional and CNES global integer clock/bias products was generally less than 5 cm for GPS, whereas clock differences of greater than 10 cm were observed for BDS due to the large RT orbit error. Compared with PPP using global integer clock/bias products, the AR performance of PPP using the regional integer clock was obviously improved for four rover stations. For single GPS, the horizontal and vertical accuracies of ambiguity-fixed PPP solutions were improved by 56.2% and 45.3% on average, respectively, whereas improvements of 67.5% and 50.5% in the horizontal and vertical directions, respectively, were observed for the combined GPS/BDS situation. Based on a regional integer clock, the RMS error of a kinematic ambiguity-fixed PPP solution in the horizontal direction could reach 0.5 cm. In terms of initialisation time, the average time to first fix (TTFF) in combined GPS/BDS PPP was shortened from 18.2 min to 12.7 min. In view of the high AR performance realised with the use of regional integer clocks, this method can be applied to scenarios that require high positioning accuracy, such as deformation monitoring.  相似文献   

8.
两步法快速解算编队卫星GPS模糊度   总被引:1,自引:1,他引:0  
为克服卫星编队飞行实时相对定位中双频模糊度解算速度慢的缺点,结合扩展Kalman滤波(EKF,Extended Kalman Filter),首先采用少数个历元(如10个)相位平滑伪距相对定位结果与 L6的平均值对滤波初始化,再根据两步法解算双频模糊度,即先解算并正确固定宽巷模糊度,获得较准确的基线分量估值,然后采用选权拟合方法,将基线分量作为约束条件解算并固定双频模糊度.仿真算例计算结果表明,当宽巷模糊度正确固定后,编队卫星间相对定位误差在5cm以内,两步法可以在较短时间(约3min)内固定双频模糊度,为精确解算编队卫星的相对状态提供保障.  相似文献   

9.
Integer ambiguity resolution (IAR) can improve precise point positioning (PPP) performance significantly. IAR for PPP became a highlight topic in global positioning system (GPS) community in recent years. More and more researchers focus on this issue. Progress has been made in the latest years. In this paper, we aim at investigating and demonstrating the performance of a global zero-differenced (ZD) PPP IAR service for GPS users by providing routine ZD uncalibrated fractional offsets (UFOs) for wide-lane and narrow-lane. Data sets from all IGS stations collected on DOY 1, 100, 200 and 300 of 2010 are used to validate and demonstrate this global service. Static experiment results show that an accuracy better than 1 cm in horizontal and 1–2 cm in vertical could be achieved in ambiguity-fixed PPP solution with only hourly data. Compared with PPP float solution, an average improvement reaches 58.2% in east, 28.3% in north and 23.8% in vertical for all tested stations. Results of kinematic experiments show that the RMS of kinematic PPP solutions can be improved from 21.6, 16.6 and 37.7 mm to 12.2, 13.3 and 34.3 mm for the fixed solutions in the east, north and vertical components, respectively. Both static and kinematic experiments show that wide-lane and narrow-lane UFO products of all satellites can be generated and provided in a routine way accompanying satellite orbit and clock products for the PPP user anywhere around the world, to obtain accurate and reliable ambiguity-fixed PPP solutions.  相似文献   

10.
The integer ambiguity resolution (AR) of carrier phase is significant for Global Navigation Satellite System (GNSS) precise positioning. However, in kinematic case, single-epoch AR methods based on alone GNSS are usually not reliable due to the instable pseudorange accuracy. Moreover, the computation of classical AR method Least Squares Ambiguity Decorrelation Adjustment (LAMBDA) is large. Thus, the inertial measurement unit (IMU) is introduced, a new inertial-aided AR method that directly rounds the float ambiguity of BeiDou triple-frequency combined observations, which is characterized by long wavelength, low carrier-phase noise and ionospheric delay, is proposed. The mathematical model of the new method is derived first. Then the impacts of the carrier-phase noise, ionospheric delay and inertial navigation system (INS) position error on the AR success ratio of combined observation are analyzed through probabilistic approach. Based on above investigation, the combinations (0, ?1, 1), (1, 4, ?5) and (4, ?2, ?3) are selected to resolve the original ambiguity. A vehicular integrated navigation test is performed to demonstrate the proposed method. The results show that the average AR success ratios of the three selected combinations, whose float ambiguity errors are 0.041, 0.146, 0.279 cycle respectively, are above 97.25% without regard to low-elevation C05. With respect to positioning accuracy based on our AR method when compared with IE software, the east, north, up error RMS of position are 0.042, 0.024, 0.069 m, respectively. In terms of the AR recover after the BeiDou signals outage, as long as 62 s BeiDou signal complete outage, all the ambiguities of all satellites could be re-fixed immediately. Besides, during the 90 s signals partial outage, the AR is not influenced by the position error, since the float ambiguity errors are all below half-cycle. The research of this contribution demonstrates the effectiveness of the proposed new method, which indicates it is applicable to kinematic positioning, even in BDS degraded and denied environments.  相似文献   

11.
LAMBDA算法依赖于初始的模糊度浮点解,但仅用载波相位观测方程需要多个历元才能获得浮点解,将导致初始化时间过长.针对这一问题,对GPS(Global Positioning System)单历元的载波相位单差方程进行特殊变换,将未知的整周模糊度看成噪声,从而构造出新的观测方程,和原始的观测方程进行组合求解,克服了仅用载波相位双差观测方程因为亏秩而无法在单历元获得浮点解的缺点,解决了初始化时间的问题.通过深入研究浮点解和固定解之间的关系,提出一种将低精度浮点解映射到固定解的方法,降低了LAMBDA算法对高精度浮点解的依赖性,避免了用多个历元获取浮点解的高精度,从而实现了单频、单历元的整周模糊度估计.通过实际测试,该算法成功率高于97%,能够有效地用于实时动态姿态解算.   相似文献   

12.
高轨飞行器可用卫星数目较少,信号空间链路损耗大,使用伪距进行测量的精度较低.提出基于GNSS(Global Navigation Satellite System)卫星载波相位与捷联惯导紧组合方法对高轨机动飞行器进行自主导航.该方法将连续跟踪的卫星初次可用时的整周模糊度的浮点解作为状态变量,通过平方根UKF建立了组合导航非线性滤波模型,提出了基于整周浮点解交集的滤波器故障检测方法.研究表明,提出的组合导航方法充分利用了载波相位高测量精度和系统性误差缓变的特点,提高了系统的可靠性和精度.  相似文献   

13.
传统动力学定轨法受制于动力学模型精度,传统几何定轨法精度受限,只能达到亚米级,而基于精密单点定位(PPP)模式的几何定轨法一般采用浮点解,定轨精度及可靠性较基于双差模式的相对定位较差。为提高PPP模式低轨定轨的定位性能,利用中国区域内外的IGS测站计算出当前所有卫星的宽巷和窄巷相位小数偏差产品,对经过中国大陆区域上空的国产低轨卫星海洋二号(HY-2)和资源三号 (ZY-3) 卫星进行固定模糊度PPP的定轨解算,与事后精密轨道结果进行比较,分析其外符合精度。结果表明:仅利用约10min弧段的HY-2和ZY-3卫星数据,切向与径向的定轨精度可达2cm左右,法向为5cm左右,较浮点解定轨精度大幅提升。基于固定模糊度PPP的定轨方法能够满足厘米级的实时精密定轨。  相似文献   

14.
Given the severe effects of the ionosphere on global navigation satellite system (GNSS) signals, single-frequency (SF) precise point positioning (PPP) users can only achieve decimeter-level positioning results. Ionosphere-free combinations can eliminate the majority of ionospheric delay, but increase observation noise and slow down dual-frequency (DF) PPP convergence. In this paper, we develop a regional ionosphere modeling and rapid convergence approach to improve SF PPP (SFPPP) accuracy and accelerate DF PPP (DFPPP) convergence speed. Instead of area model, ionospheric delay is modeled for each satellite to be used as a priori correction. With the ionospheric, wide-lane uncalibrated phase delay (UPD) and residuals satellite DCBs product, the wide-lane observations for DF users change to be high-precision pseudorange observations. The validation of a continuously operating reference station (CORS) network was analyzed. The experimental results confirm that the approach considerably improves the accuracy of SFPPP. For DF users, convergence time is substantially reduced.  相似文献   

15.
This paper proposes a real-time kinematic (RTK) model that uses one common reference satellite for the Galileo system with four frequency observations. In the proposed model, the double-differenced (DD) pseudorange and carrier phase biases among the different frequencies are estimated as unknown parameters to recover the integer features of the DD ambiguities among the different frequencies for ambiguity resolution and precise positioning. Analysis results show that the E5a, E5b, and E5 frequencies have virtually the same performance in terms of the positioning accuracy, observation residuals, and ratio values of ambiguity resolution. However, the E1 frequency performs worse than the E5a, E5b, and E5 frequencies. The RTK results for the combination of multiple frequencies are much better than those for a single-frequency observation, the coordinates’ standard deviation is improved about 20–30%, and the ambiguity fix time is improved about 10%.  相似文献   

16.
In the application of precise point positioning (PPP), especially in the dynamic mode, the classical Kalman filter (KF) usually produces a large number of estimation errors or diverges when there are gross errors in the observation data or unexpected turbulences occur in target motion state or both of them. For such problem, a variational Bayesian (VB)-based robust adaptive Kalman filtering (VB-RAKF) is proposed in this paper. This filter introduces a classification robust equivalent weight function to resist observation gross error and the inverse Wishart prior to model inaccurate process noise covariance matrix (PNCM). To improve the instantaneous accuracy of state estimation, the VB approach is used to obtain better estimations of inaccurate PNCM. Several sets of observation data collected by IGS reference stations and vehicles are employed to check the robustness and positioning accuracy of the VB-RAKF model. The results show that the VB-RAKF algorithm is more robust than the KF, and can effectively resist the gross error in observation data and control state disturbance. In the IGS reference station tests, when compared to the KF, the static positioning accuracies of the VB-RAKF in the north, east and up directions are improved by 13%, 8% and 22%, respectively, and the simulated dynamic positioning accuracies of the VB-RAKF in the north, east and up directions are improved by 19%, 9% and 21%, respectively. The in-vehicle dynamic test verifies that the VB-RAKF outperforms the KF, and shows that the VB-RAKF has better performance than the KF when dealing with observation data which has obvious gross errors, and similar performance as the KF when gross errors are small.  相似文献   

17.
Motivated by the IGS real-time Pilot Project, GFZ has been developing its own real-time precise positioning service for various applications. An operational system at GFZ is now broadcasting real-time orbits, clocks, global ionospheric model, uncalibrated phase delays and regional atmospheric corrections for standard PPP, PPP with ambiguity fixing, single-frequency PPP and regional augmented PPP. To avoid developing various algorithms for different applications, we proposed a uniform algorithm and implemented it into our real-time software. In the new processing scheme, we employed un-differenced raw observations with atmospheric delays as parameters, which are properly constrained by real-time derived global ionospheric model or regional atmospheric corrections and by the empirical characteristics of the atmospheric delay variation in time and space. The positioning performance in terms of convergence time and ambiguity fixing depends mainly on the quality of the received atmospheric information and the spatial and temporal constraints. The un-differenced raw observation model can not only integrate PPP and NRTK into a seamless positioning service, but also syncretize these two techniques into a unique model and algorithm. Furthermore, it is suitable for both dual-frequency and sing-frequency receivers. Based on the real-time data streams from IGS, EUREF and SAPOS reference networks, we can provide services of global precise point positioning (PPP) with 5–10 cm accuracy, PPP with ambiguity-fixing of 2–5 cm accuracy, PPP using single-frequency receiver with accuracy of better than 50 cm and PPP with regional augmentation for instantaneous ambiguity resolution of 1–3 cm accuracy. We adapted the system for current COMPASS to provide PPP service. COMPASS observations from a regional network of nine stations are used for precise orbit determination and clock estimation in simulated real-time mode, the orbit and clock products are applied for real-time precise point positioning. The simulated real-time PPP service confirms that real-time positioning services of accuracy at dm-level and even cm-level is achievable with COMPASS only.  相似文献   

18.
GNSS (Global Navigation Satellite Systems)-based attitude determination is an important field of study, since it is a valuable technique for the orientation estimation of remote sensing platforms. To achieve highly accurate angular estimates, the precise GNSS carrier phase observables must be employed. However, in order to take full advantage of the high precision, the unknown integer ambiguities of the carrier phase observables need to be resolved. This contribution presents a GNSS carrier phase-based attitude determination method that determines the integer ambiguities and attitude in an integral manner, thereby fully exploiting the known body geometry of the multi-antennae configuration. It is shown that this integral approach aids the ambiguity resolution process tremendously and strongly improves the capacity of fixing the correct set of integer ambiguities. In this contribution, the challenging scenario of single-epoch, single-frequency attitude determination is addressed. This guarantees a total independence from carrier phase slips and losses of lock, and it also does not require any a priori motion model for the platform. The method presented is a multivariate constrained version of the popular LAMBDA method and it is tested on data collected during an airborne remote sensing campaign.  相似文献   

19.
This paper proposes a precise line-of-sight (LOS) vector estimation using an inter-satellite radio frequency system. GNSS-like technology is inherited such that the ranging signals are locally generated inside the formation. However, the approach differs from the standard GNSS model usage in that the LOS vector to be of a unit length is fully explored as a priori constraint for the carrier phase integer ambiguity resolution. The constraint is lumped to the mapping process from the real-valued ambiguities to the integers by what is called validation or subset ambiguity bounding. These two approaches have the same rules of regarding the constraint as a gateway to accept or reject the ambiguity candidates, but differ by using “all-ambiguity-set” and “subset-ambiguity”. Both show remarkable improvement with up to 80% lower integer fixing failure rates than without treating the constraint. Validation provides a slightly better performance than the subset ambiguity bounding in terms of the integer fixing failure rates and the computational efficiency. The predefined tolerance regions that are critical for these two methods are analytically determined as function of the carrier noise. The paper also introduces a LOS dependent ambiguity dilution of precision (ADOPLOS) measure that can serve as a metric to characterize the expectation of being able to successfully resolve the ambiguities. The region of ADOPLOS lower than 0.21 is empirically summarized as the safe region where the integer fixing failure rates are less than 1%. A closed form of the ADOPLOS is derived which is able to capture the impact of the various factors. Antenna baseline geometries and multiple frequencies in the form of an ultra-BOC signal structure are demonstrated as the most important influencing factors. With multiple properly arrayed antennas and using ultra-BOC structure, instantaneous ambiguity resolution can be achieved and the LOS accuracy can reach millimeter level.  相似文献   

20.
采用CNES发布的实时相位偏差数据,实现包含模糊度固定的实时精密单点定位.对全球10个IGS测站10天观测数据进行RTPPP解算,分别统计模糊度首次固定时间和定位精度,结果显示利用实时相位偏差数据能在平均30min内实现模糊度首次固定,模糊度固定时水平位置误差由6cm迅速降低至2cm左右,三维位置误差由10cm迅速降低至5cm左右,同时RTPPP模糊度固定在3h观测内可保持水平3cm、三维5cm左右的定位精度.通过分析得出,基于相位偏差的RTPPP模糊度固定技术具有较高的定位精度和定位稳定性,能够快速实现cm级定位.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号