首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ionosphere delay is very important to GNSS observations, since it is one of the main error sources which have to be mitigated even eliminated in order to determine reliable and precise positions. The ionosphere is a dispersive medium to radio signal, so the value of the group delay or phase advance of GNSS radio signal depends on the signal frequency. Ground-based GNSS stations have been used for ionosphere monitoring and modeling for a long time. In this paper we will introduce a novel approach suitable for single-receiver operation based on the precise point positioning (PPP) technique. One of the main characteristic is that only carrier-phase observations are used to avoid particular effects of pseudorange observations. The technique consists of introducing ionosphere ambiguity parameters obtained from PPP filter into the geometry-free combination of observations to estimate ionospheric delays. Observational data from stations that are capable of tracking the GPS/BDS/GALILEO from the International GNSS Service (IGS) Multi-GNSS Experiments (MGEX) network are processed. For the purpose of performance validation, ionospheric delays series derived from the novel approach are compared with the global ionospheric map (GIM) from Ionospheric Associate Analysis Centers (IAACs). The results are encouraging and offer potential solutions to the near real-time ionosphere monitoring.  相似文献   

2.
为评估北斗D2导航电文对系统空间信号完好性影响,对D2导航电文结构和内容进行研究。首先,通过基本导航信息的解析,给出了确定卫星位置和用户位置过程所需的信息和时间,并对受卫星星历和时钟影响的用户测距误差做了说明,介绍了电离层误差、对流层误差改正模型。然后,通过增强服务信息的解析,论述了完好性信息(RURA、UDRE)及格网电离层延迟的计算方法。最后给出了使用完好性信息、用户局部误差获取用户定位误差保护级的算法。  相似文献   

3.
Since the signals of global navigation satellite system (GNSS) are blocked frequently in challenging environments, the discontinuous carrier phases seriously affect the application of GNSS precise positioning. To improve the carrier phase continuity, this paper proposes a carrier phase prediction method based on carrier open-loop tracking. In the open-loop tracking mode, the carrier numerically controlled oscillator (NCO) is controlled by the predicted Doppler, but not by the loop filter output. To improve the phase prediction effective time, accurate receiver clock drift estimation is studied in the prediction method. The phase prediction performance is tested on GNSS software receiver. In the phase prediction effective time tests, open-loop processes were set for the tested channel. The test results show that, when some satellite signals are blocked in 15?s, the probability of carrier phase error less than quarter cycles is more than 94%. In the real time kinematic (RTK) positioning tests, some satellite signals are blocked in 10–15?s repeatedly. The test results show that, the carrier phase continuity is basically not affected by the signal interruption, and the RTK can almost keep continuous centimeter-level positioning accuracy without re-fixing the integer ambiguity.  相似文献   

4.
Transmission link disturbances and device failure cause global navigation satellite system (GNSS) receivers to miss observations, leading to poor accuracy in real-time kinematic (RTK) positioning. Previously described solutions for this problem are influenced by the length of the prediction period, or are unable to account for changes in receiver state because they use information from previous epochs to make predictions. We propose an algorithm for predicting double difference (DD) observations of obstructed BeiDou navigation system (BDS) GEO satellites. Our approach adopts the first-degree polynomial function for predicting missing observations. We introduce a Douglas-Peucker algorithm to judge the state of the rover receiver to reduce the impact of predictive biases. Static and kinematic experiments were carried out on BDS observations to evaluate the proposed algorithm. The results of our navigation experiment demonstrate that RTK positioning accuracy is improved from meter to decimeter level with fixed ambiguity (horizontal?<?2?cm, vertical?<?18?cm). Horizontal accuracy is improved by over 50%, and the vertical accuracies of the results of the static and kinematic experiments are increased by 47% and 27% respectively, compared with the results produced by the classical approach. Though as the baseline becomes longer, the accuracy is weakened, our predictive algorithm is an improvement over existing approaches to overcome the issue of missing data.  相似文献   

5.
高轨飞行器可用卫星数目较少,信号空间链路损耗大,使用伪距进行测量的精度较低.提出基于GNSS(Global Navigation Satellite System)卫星载波相位与捷联惯导紧组合方法对高轨机动飞行器进行自主导航.该方法将连续跟踪的卫星初次可用时的整周模糊度的浮点解作为状态变量,通过平方根UKF建立了组合导航非线性滤波模型,提出了基于整周浮点解交集的滤波器故障检测方法.研究表明,提出的组合导航方法充分利用了载波相位高测量精度和系统性误差缓变的特点,提高了系统的可靠性和精度.  相似文献   

6.
PPP (Precise Point Positioning) is a GNSS (Global Navigation Satellite Systems) positioning method that requires SSR (State Space Representation) corrections in order to provide solutions with an accuracy of centimetric level. The so-called RT-PPP (Real-time PPP) is possible thanks to real-time precise SSR products, for orbits and clocks, provided by IGS (International GNSS Service) and its associate analysis centers such as CNES (Centre National d'Etudes Spatiales). CNES SSR products also enable RT-PPP with integer ambiguity resolution. In GNSS related literature, PPP with ambiguity resolution (PPP-AR) in real-time is often referred as PPP-RTK (PPP – Real Time Kinematic). PPP-WIZARD (PPP - With Integer and Zero-difference Ambiguity Resolution Demonstrator) is a software that is made available by CNES. This software is capable of performing PPP-RTK. It estimates slant ionospheric delays and other GNSS positioning parameters. Since ionospheric effects are spatially correlated by GNSS data from active networks, it is possible to model and provide ionospheric delays for any position in the network coverage area. The prior knowledge ionospheric delays can reduce positioning convergence for PPP-RTK users. Real-time ionospheric models could benefit from highly precise ionospheric delays estimated in PPP-AR. In this study, we demonstrate that ionospheric delays obtained throughout PPP-AR estimation are actu ally ionospheric observables. Ionospheric observables are biased by an order of few meters caused by the receiver hardware biases. These biases prohibit the use of PPP-WIZARD ionospheric delays to produce ionospheric models. Receiver biases correction is essential to provide ionospheric delays while using PPP-AR based ionospheric observables. In this contribution, a method was implemented to estimate and mitigate receiver hardware biases influence on slant ionospheric observables from PPP-AR. In order to assess the proposed approach, PPP-AR data from 12 GNSS stations were processed over a two-month period (March and April 2018). A comparison between IGS ionospheric products and PPP-AR based ionospheric observables corrected for receiver biases, resulted in a mean of differences of −39 cm and 51 cm standard deviation. The results are consistent with the accuracy of the IGS ionospheric products, 2–8 TECU, considering that 1 TECU is ~16 cm in L1. In another analysis, a comparison of ionospheric delays from 5 pairs of short baselines GNSS stations found an agreement of 0.001 m in mean differences with 22 cm standard deviation after receiver biases were corrected. Therefore, the proposed solution is promising and could produce high quality (1–2 TECU) slant ionospheric delays. This product can be used in a large variety of modeling approaches, since ionospheric delays after correction are unbiased. These results indicate that the proposed strategy is promising, and could benefit applications that require accuracy of 1–2 TECU (~16–32 cm in L1).  相似文献   

7.
The possibility to access undifferenced and uncombined Global Navigation Satellite System (GNSS) measurements on smart devices with an Android operating system allows us to manage pseudorange and carrier-phase measurements to increase the accuracy of real-time positioning. The goal is to perform real-time kinematic network positioning with smartphones, evaluating the positioning accuracy regarding an external mass-market device. The positioning of Samsung Galaxy S8+ and Huawei P10 plus smartphones was performed using a dedicated tool developed by the authors, considering a continuous operating reference station (CORS) network with a mean inter-station distance of about 50?km. The same positioning technique was also applied to an external GNSS low-cost single-frequency receiver (u-blox EVK-M8T) to compare performance between the receiver and antenna embedded in the previous smartphones and this low-cost receiver coupled with a mass-market antenna (Garmin GA38). Attention was also focused on the phase ambiguity resolution, that it is still a challenging aspect for mass-market devices: even if the two smartphones provide slightly different results, the accuracy obtainable today is greater than 60?cm with a precision of few centimetres in real-time, if a CORS network is available. For real-time applications using portable devices, decimetre-level accuracy is sufficient for many applications, such as rapid mapping and search and rescue activities: these results will open new frontiers in terms of real-time positioning with portable low-cost devices.  相似文献   

8.
利用GPS(Global Positioning System)相位观测进行动态定位的主要困难就是法方程不适定问题(秩亏或病态问题),导致模糊度浮动解及其协方差阵不准,以此构造的模糊度搜索范围比较大,使得模糊度的搜索非常困难.提出利用Doppler高精度测速预报近似坐标并对其附加约束,解决法方程求逆中的不适定问题,提高模糊度浮动解及其方差阵的准确性,缩小模糊度的搜索范围,提高模糊度搜索的成功率.结果表明,短基线情况,新方法在模糊度动态解算中取得了明显效果.   相似文献   

9.
以北斗三频数据为基础,给出了北斗三频组合观测值的数学模型并系统分析了组合后的波长、电离层误差以及观测噪声误差;在保持整周模糊度整数特性的前提下,以整数线性变换法为基础,通过Matlab编程实现组合系数的优化选取。通过将不同组合系数应用于伪距相位法三频数据周跳探测中,发现组合系数之和不为0的组合周跳探测值均在0.5周以上,且组合系数之和越大,波动越大;通过将不同组合系数应用于无几何CIR法三频数据模糊度解算中,发现系数之和不为0,但波长较长的组合求得的模糊度残差值大致在0.6周,通过合适的模糊度搜索方法可以得到正确的模糊度固定解,在短基线模糊度解算中可以考虑使用。  相似文献   

10.
The ionosphere is an important part of the atmosphere and it is the largest error source of GNSS positioning for single-frequency users. So establishing a precise ionosphere model is one of the critical steps for satellite navigation and also for ionospheric research.  相似文献   

11.
The performance of real-time (RT) precise positioning can be improved by utilizing observations from multiple Global Navigation Satellite Systems (GNSS) instead of one particular system. Since the end of 2012, BeiDou, independently established by China, began to provide operational services for users in the Asia-Pacific regions. In this study, a regional RT precise positioning system is developed to evaluate the performance of GPS/BeiDou observations in Australia in providing high precision positioning services for users. Fixing three hourly updated satellite orbits, RT correction messages are generated and broadcasted by processing RT observation/navigation data streams from the national network of GNSS Continuously Operating Reference Stations in Australia (AUSCORS) at the server side. At the user side, RT PPP is realized by processing RT data streams and the RT correction messages received. RT clock offsets, for which the accuracy reached 0.07 and 0.28?ns for GPS and BeiDou, respectively, can be determined. Based on these corrections, an accuracy of 12.2, 30.0 and 45.6?cm in the North, East and Up directions was achieved for the BeiDou-only solution after 30 min while the GPS-only solution reached 5.1, 15.3 and 15.5?cm for the same components at the same time. A further improvement of 43.7, 36.9 and 45.0 percent in the three directions, respectively, was achieved for the combined GPS/BeiDou solution. After the initialization process, the North, East and Up positioning accuracies were 5.2, 8.1 and 17.8?cm, respectively, for the BeiDou-only solution, while 1.5, 3.0, and 4.7?cm for the GPS-only solution. However, we only noticed a 20.9% improvement in the East direction was obtained for the GPS/BeiDou solution, while no improvements in the other directions were detected. It is expected that such improvements may become bigger with the increasing accuracy of the BeiDou-only solution.  相似文献   

12.
为了获取高速铁路列车在隧道这种导航卫星不可见环境下的定位信息,提出一种基于捷联惯性导航系统(SINS)和射频识别技术(RFID)的组合定位方法。通过响应时间模型来计算标签的定位精度,依据实际轨道环境增加标签对列车姿态校准的能力,同时结合惯性导航系统解算得到连续的定位数据。仿真结果表明:在30 km长的隧道利用射频识别标签位置信息进行校准,可以很大程度地减小惯性导航系统的误差积累,提高定位精度。引入姿态信息后,可以在陀螺仪性能与标签间隔的多种组合中保持隧道全线定位精度在米级,最高能够达到0.5 m。   相似文献   

13.
Evaluation of COMPASS ionospheric model in GNSS positioning   总被引:1,自引:0,他引:1  
As important products of GNSS navigation message, ionospheric delay model parameters are broadcasted for single-frequency users to improve their positioning accuracy. GPS provides daily Klobuchar ionospheric model parameters based on geomagnetic reference frame, while the regional satellite navigation system of China’s COMPASS broadcasts an eight-parameter ionospheric model, COMPASS Ionospheric Model(CIM), which was generated by processing data from continuous monitoring stations, with updating the parameters every 2 h. To evaluate its performance, CIM predictions are compared to ionospheric delay measurements, along with GPS positioning accuracy comparisons. Real observed data analysis indicates that CIM provides higher correction precision in middle-latitude regions, but relatively lower correction precision for low-latitude regions where the ionosphere has much higher variability. CIM errors for some users show a common bias for in-coming COMPASS signals from different satellites, and hence ionospheric model errors are somehow translated into the receivers’ clock error estimation. In addition, the CIM from the China regional monitoring network are further evaluated for global ionospheric corrections. Results show that in the Northern Hemisphere areas including Asia, Europe and North America, the three-dimensional positioning accuracy using the CIM for ionospheric delay corrections is improved by 7.8%–35.3% when compared to GPS single-frequency positioning ionospheric delay corrections using the Klobuchar model. However, the positioning accuracy in the Southern Hemisphere is degraded due apparently to the lack of monitoring stations there.  相似文献   

14.
Obtaining reliable GNSS uncalibrated phase delay (UPD) or integer clock products is the key to achieving ambiguity-fixed solutions for real-time (RT) precise point positioning (PPP) users. However, due to the influence of RT orbit errors, the quality of UPD/integer clock products estimated with a globally distributed GNSS network is difficult to ensure, thereby affecting the ambiguity resolution (AR) performance of RT-PPP. In this contribution, by fully utilising the consistency of orbital errors in regional GNSS network coverage areas, a method is proposed for estimating regional integer clock products to compensate for RT orbit errors. Based on Centre National d’Études Spatiales (CNES) RT precise products, the regional GPS/BDS integer clock was estimated with a CORS network in the west of China. Results showed that the difference between the estimated regional and CNES global integer clock/bias products was generally less than 5 cm for GPS, whereas clock differences of greater than 10 cm were observed for BDS due to the large RT orbit error. Compared with PPP using global integer clock/bias products, the AR performance of PPP using the regional integer clock was obviously improved for four rover stations. For single GPS, the horizontal and vertical accuracies of ambiguity-fixed PPP solutions were improved by 56.2% and 45.3% on average, respectively, whereas improvements of 67.5% and 50.5% in the horizontal and vertical directions, respectively, were observed for the combined GPS/BDS situation. Based on a regional integer clock, the RMS error of a kinematic ambiguity-fixed PPP solution in the horizontal direction could reach 0.5 cm. In terms of initialisation time, the average time to first fix (TTFF) in combined GPS/BDS PPP was shortened from 18.2 min to 12.7 min. In view of the high AR performance realised with the use of regional integer clocks, this method can be applied to scenarios that require high positioning accuracy, such as deformation monitoring.  相似文献   

15.
The advent of modernized and new global navigation satellite systems (GNSS) has enhanced the availability of satellite based positioning, navigation, and timing (PNT) solutions. Specifically, it increases redundancy and yields operational back-up or independence in case of failure or unavailability of one system. Among existing GNSS, the Chinese BeiDou system (BDS) is being developed and will consist of geostationary (GEO) satellites, inclined geosynchronous orbit (IGSO) satellites, and medium-Earth-orbit (MEO) satellites. In this contribution, a BeiDou–GPS robustness analysis is carried out for instantaneous, unaided attitude determination.  相似文献   

16.
GPS relative navigation filters could benefit notably from an accurate modeling of the ionospheric delays, especially over large baselines (>100 km) where double difference delays can be higher than several carrier wavelengths. This paper analyzes the capability of ionospheric path delay models proposed for spaceborne GPS receivers in predicting both zero-difference and double difference ionospheric delays. We specifically refer to relatively simple ionospheric models, which are suitable for real-time filtering schemes. Specifically, two ionospheric delay models are evaluated, one assuming an isotropic electron density and the other considering the effect on the electron density of the Sun aspect angle. The prediction capability of these models is investigated by comparing predicted ionospheric delays with measured ones on real flight data from the Gravity Recovery and Climate Experiment mission, in which two satellites fly separated of more than 200 km. Results demonstrate that both models exhibit a correlation in the excess of 80% between predicted and measured double-difference ionospheric delays. Despite its higher simplicity, the isotropic model performs better than the model including the Sun effect, being able to predict double differenced delays with accuracy smaller than the carrier wavelength in most cases. The model is thus fit for supporting integer ambiguity fixing in real-time filters for relative navigation over large baselines. Concerning zero-difference ionospheric delays, results demonstrate that delays predicted by the isotropic model are highly correlated (around 90%) with those estimated using GPS measurements. However, the difference between predicted and measured delays has a root mean square error in the excess of 30 cm. Thus, the zero-difference ionospheric delays model is not likely to be an alternative to methods exploiting carrier-phase observables for cancelling out the ionosphere contribution in single-frequency absolute navigation filters.  相似文献   

17.
Ionospheric delay is one of the significant error sources for global navigation satellite system (GNSS) positioning. GNSSs broadcast the coefficients of the ionospheric model to correct ionospheric delay for single-frequency users. A modified three-dimensional model (NeQuick G) based on the NeQuick climatological model is adopted for Galileo users. The NeQuick G model uses the effective ionization level (Az) instead of the sunspot number as the driving parameter. In this study, we introduce the ionospheric climate index (ICI) as a new driving parameter for the NeQuick model. In comparison, the ICI-driven NeQuick model has a better performance than the Az-driven NeQuick G model at both low and high latitudes. In addition, only one GNSS station at low latitudes is required to calculate the ICI, which would save maintenance costs and improve the efficiency of updating the broadcast coefficients. This model has potential application value for future upgrades of Galileo’s ionospheric broadcast model.  相似文献   

18.
The ionospheric error affects the accuracy of the Global Navigation Satellite Systems observation and precise orbit determination. Usually, only the first order ionospheric error is considered, which can be eliminated by the ionospheric-free linear combination observation. But the remaining higher order ionospheric error will affect the accuracy of observations and their applications. In this paper, the influence of the higher order ionospheric error have been studied by using the International Geomagnetic Reference Field 13 and the Global Ionosphere Maps model produced by the Center for Orbit Determination in Europe. Focus on ionospheric error, the experiment of paper at doy 302 in 2019, which show that the second order ionospheric error impacting BeiDou Navigation Satellite System (BDS) B1I and B3I observation is 6.3569 mm and 11.8484 mm, respectively. Whereas, the third order ionospheric error impacting BDS B1I and B3I observation is 0.1734 mm and 0.3977 mm, respectively. Due to the current measurement accuracy of BDS carrier-phase observation can reach 2 mm, the influence of high order ionospheric error on observation should be considered. For BDS precise orbit determination, the orbit overlapping results are indicated that its orbit accuracy can be improved approximately 5 mm with the higher order ionospheric error correction, which is also in agreement with the results of Satellite Laser Ranging in this work.  相似文献   

19.
Precise orbit determination (POD) and precise baseline determination (PBD) of Swarm satellites with 4 years of data are investigated. Ambiguity resolution (AR) plays a crucial role in achieving the best orbit accuracy. Swarm POD and PBD based on single difference (SD) AR and traditional double difference (DD) AR methods are explored separately. Swarm antenna phase center variation (PCV) corrections are developed to further improve the orbit determination accuracy. The code multipath of C1C, C1W and C2W observations is first evaluated and clear variations in code noise related to different receiver settings are observed. Carrier phase residuals of different time periods and different loop tracking settings of receiver are studied to explore the effect of ionospheric scintillation on POD. The reduction of residuals in the polar and geomagnetic equator regions confirms the positive impact of the updated carrier tracking loops (TLs) on POD performance. The SD AR orbits and orbits with float ambiguity (FA) are compared with the Swarm precise science orbits (PSOs). An average improvement of 27 %, 4 % and 16 % is gained in along-track, cross-track and radial directions by fixing the ambiguity to integer. For Swarm-A/B and Swarm-B/C formations, specific days are selected to perform the DD AR-based POD during which the average distance of the formation satellites is less than 5000 km. Satellite laser ranging (SLR) observations are employed to validate the performance of FA, SD AR and DD AR orbits. The consistency between the SD AR orbits and SLR data is at a level of 10 mm which shows an improvement of 25 % when comparing with the FA results. An SLR residuals reduction of 15 % is also achieved by the DD AR solution for the selected days. Precise relative navigation is also an essential aspect for spacecraft formation flying missions. The closure error method is proposed to evaluate the baseline precision in three dimensions. A baseline precision of 1–3 mm for Swarm-A/C formation and 3–5 mm for Swarm-A/B and Swarm-B/C satellite pairs is verified by both the consistency check and closure error method.  相似文献   

20.
The global navigation satellite system (GNSS) is presently a powerful tool for sensing the Earth's ionosphere. For this purpose, the ionospheric measurements (IMs), which are by definition slant total electron content biased by satellite and receiver differential code biases (DCBs), need to be first extracted from GNSS data and then used as inputs for further ionospheric representations such as tomography. By using the customary phase-to-code leveling procedure, this research comparatively evaluates the calibration errors on experimental IMs obtained from three GNSS, namely the US Global Positioning System (GPS), the Chinese BeiDou Navigation Satellite System (BDS), and the European Galileo. On the basis of ten days of dual-frequency, triple-GNSS observations collected from eight co-located ground receivers that independently form short-baselines and zero-baselines, the IMs are determined for each receiver for all tracked satellites and then for each satellite differenced for each baseline to evaluate their calibration errors. As first derived from the short-baseline analysis, the effects of calibration errors on IMs range, in total electron content units, from 1.58 to 2.16, 0.70 to 1.87, and 1.13 to 1.56 for GPS, Galileo, and BDS, respectively. Additionally, for short-baseline experiment, it is shown that the code multipath effect accounts for their main budget. Sidereal periodicity is found in single-differenced (SD) IMs for GPS and BDS geostationary satellites, and the correlation of SD IMs over two consecutive days achieves the maximum value when the time tag is around 4?min. Moreover, as byproducts of zero-baseline analysis, daily between-receiver DCBs for GPS are subject to more significant intra-day variations than those for BDS and Galileo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号