首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Harmful algal blooms (HABs) are truly global marine phenomena of increasing significance. Some HAB occurrences are different to observe because of their high spatial and temporal variability and their advection, once formed, by surface currents. A serious HAB occurred in the Bohai Sea during autumn 1998, causing the largest fisheries economic loss. The present study analyzes the formation, distribution, and advection of HAB using satellite SeaWiFS ocean color data and other oceanographic data. The results show that the bloom originated in the western coastal waters of the Bohai Sea in early September, and developed southeastward when sea surface temperature (SST) increased to 25–26 °C. The bloom with a high Chl-a concentration (6.5 mg m−3) in center portion covered an area of 60 × 65 km2. At the end of September, the bloom decayed when SST decreased to 22–23 °C. The HAB may have been initiated by a combination of the river discharge nutrients in the west coastal waters and the increase of SST; afterwards it may have been transported eastward by the local circulation that was enhanced by northwesterly winds in late September and early October.  相似文献   

2.
An analysis of the main remotly sensed oceanographic variables was conducted to characterize the dominant drivers that modulate the spatial-temporal variability of coastal phytoplankton biomass in the northern limit of the Eastern Tropical Pacific. The phytoplankton biomass was analyzed using monthly average satellite chlorophyll (Chlo) concentration data from MODIS sensors for the period 2003–2017. Oceanographic conditions were analyzed by considering (i) Sea Surface Temperature (SST) high-resolution data from the GHRSST project, (ii) wind stress calculated with data from the zonal and meridional components of the CCMP product, (iii) climatological precipitation, and (iv) climatological river flow. Chlo time series and spatial variability were analyzed using Hovmöller diagrams and Empirical Orthogonal Functions (EOF), respectively. A strong semi-annual signal in Chlo concentration along the coast was observed: the first peak occurs in winter-spring (5.0 mg·m−3) and a second one in summer-autumn (6.5 mg·m−3). A high year-round average of Chlo concentration (3.0–15.0 mg·m−3) was maintained by a 10 km wide along-shore coast, with maximum values spatially associated with river mouths, of which Santiago river registered the highest Chlo values (20.0 mg·m−3). Surface oceanographic conditions showed a marked annual cycle with warmer conditions (30–31 °C) from July to October and colder ones (23–24 °C) from December to April; during the cold period, seasonal wind stress stimulated coastal upwelling. The EOF showed that 70% of Chlo concentration variability was controlled by the semi-annual pattern, which responded to coastal upwelling conditions during cold period, while rivers outflows influenced high Chlo concentration during the warm period. These results highlighted the importance for land-ocean interface to sustain coastal ecosystems' biological production and the major role of watersheds as sources of nutrients to maintain high biological production during warm periods in transitional tropical-subtropical zones.  相似文献   

3.
A review of the latest published results concerning the accuracy of satellite derived sea surface temperature (SST) estimation is presented. Two types of platforms are considered : orbiting satellites and geosynchronous satellites and the accuracies that may now be expected from such systems are reported. This review emphasizes the impressive improvement in global mapping of SST obtained from the Advanced Very High Resolution Radiometer (AVHRR) on NOAA's operational polar satellites. Tests of the AVHRR SST's against a high reliability data set consisting of buoys, bathythermographs and research ship reports indicate biases of < 0.1°C and RMS differences of < 0.75°C (McClain [1]). Particular attention is also paid to a method adding along track scanning capability to the present multichannel AVHRR technique. This method is demonstrated owing to the coupling of an orbiting satellite (TIROS-N) and a geosynchronous satellite (METEOSAT). Another type of coupling of two such platforms is also presented in connection with the advent of geostationary satellites equipped with a vertical sounding capability, such as GOES-4.  相似文献   

4.
Complex electrodynamic processes over the low latitude region often result in post sunset plasma density irregularities which degrade satellite communication and navigation. In order to forecast the density irregularities, their occurrence time, duration and location need to be quantified. Data from the Communication/Navigation Outage Forecasting System (C/NOFS) satellite was used to characterize the low latitude ion density irregularities from 2011 to 2013. This was supported by ground based data from the SCIntillation Network Decision Aid (SCINDA) receivers at Makerere (Geographic coordinate 32.6°E, 0.3°N, and dip latitude ?9.3°N) and Nairobi (Geographic coordinate 36.8°E, ?1.3°N, and dip latitude ?10.8°N). The results show that irregularities in ion density have a daily pattern with peaks from 20:00 to 24:00 Local Time (LT). Scintillation activity at L band and VHF over East Africa peaked in 2011 and 2012 from 20:00 to 24:00 LT, though in many cases scintillation at VHF persisted longer than that at L band. A longitudinal pattern in ion density irregularity occurrence was observed with peaks over 135–180°E and 270–300°E. The likelihood of ion density irregularity occurrence decreased with increasing altitude. Analysis of C/NOFS zonal ion drift velocities showed that the largest nighttime and daytime drifts were in 270–300°E and 300–330°E longitude regions respectively. Zonal irregularity drift velocities over East Africa were for the first time estimated from L-band scintillation indices. The results show that the velocity of plasma density irregularities in 2011 and 2012 varied daily, and hourly in the range of 50–150 m s?1. The zonal drift velocity estimates from the L-band scintillation indices had good positive correlation with the zonal drift velocities derived from VHF receivers by the spaced receiver technique.  相似文献   

5.
Monitoring sea surface temperature (SST) over a long-term and detecting the anomalies highly contribute to understanding the prevailing water quality of the sea. Earth observation satellite images are the key data sources that offer the long-term SST detection in a cost and time effective way. Since the Sea of Marmara in Türkiye is surrounded by the highly populated provinces, the water quality of the sea has gained importance for scientific and public communities over the years. This article emphasizes on the significance of detecting SST trend and corresponding anomalies of the Sea of Marmara over the past 32 years. To address the SST variations of the Sea of Marmara in time, a comprehensive set of both field and satellite data regarding SSTs were obtained within the context of this study. The SST trend and its anomalies between the years 1990 and 2021 were detected by applying Seasonal-Trend decomposition procedure based on LOESS (STL) method to NOAA OISST V2 data. On the other hand, spatial SST distribution was detected with Landsat-8, Sentinel-3 and NOAA OISST V2 satellite data. SST results were verified with the in-situ data within the scope of accuracy assessment. The results showed that SST time-series data performed an increasing trend and had anomalies mostly during the spring months in the recent years.  相似文献   

6.
Corrected thermal net radiation measurements from the four Pioneer Venus entry probes at latitudes of 60°N, 31°S, 27°S, and 4°N are presented. Three main conclusions can be drawn from comparisons of the corrected fluxes with radiative transfer calculations: (1) sounder probe net fluxes are consistent with the number density of large cloud particles (mode 3) measured on the same probe, but the IR measurements as a whole are most consistent with a significantly reduced mode 3 contribution to the cloud opacity; (2) at all probe sites, the fluxes imply that the upper cloud contains a yet undetected source of IR opacity; and (3) beneath the clouds the fluxes at a given altitude increase with latitude, suggesting greater IR cooling below the clouds at high latitudes and water vapor mixing ratios of about 2–5×10?5 near 60°, 2–5×10?4 near 30°, and >5×10?4 near the equator.  相似文献   

7.
Beyond their role in the cycling of the major elements, carbon, nitrogen, oxygen, etc., little is known about geobiological interactions involving plants with the elements of lower abundance. Plants influence the distribution of volcanic mercury by uptake from the atmosphere and soil fluids, transport to the shoot and re-release as Hg° into the atmosphere. Release rates as high as 2.5 × 10?4 g.h?1 per kg are known but even at more typical rates, fluxes far greater than the Environmental Protection Agency calculated U.S. average annual degassing rate of 130 × 10?6 g.m?2 should exist. On a global basis, the presence or absence of vegetative cover may be a significant regulator of Hg° transport between land surfaces and the atmosphere.  相似文献   

8.
The “VIS-channel” (the channel is sensitive between about .4 and 1.1 μm wavelength) of the European geostationary satellite Meteosat-2 is calibrated by the method of “vicarious calibration by means of calculated radiances”. The calibration constant, which connects the 6-bit-counts of the VIS-channel of the Meteosat-2 with the corresponding “effective radiances” is determined to be cSAT = 2.3 W·m?2·sr?1/count with an accuracy of ± 10% (preliminary values). The calibration constant is valid for “gain 0” and the period until October 1981. The result means, that the VIS-channel of Meteosat-2 at the beginning of its lifetime is about 15% more sensitive than that of Meteosat-1 was at its end.  相似文献   

9.
The continental shelf in front of Nayarit is located in the northern limit of the tropical Eastern Pacific, characterized by constituting a convergence zone of different masses of water, forming an area of significant hydrographic variability. Based on satellite remote sensing data and reanalysis between 2003 and 2019 of sea surface temperature (SST), wind stress, Ekman velocity, and geostrophic velocity, the contribution of the seasonal cycle to the variability of the study area were analyzed through climatological means, Hovmöhler diagrams, and Empirical Orthogonal Functions. The results show that in the zone in front of Matanchén Bay (21.5 °N) and the adjacent continental shelf, there is a core of warm surface water. The distribution of the SST is explained by the seasonal pattern of meridional/zonal variability in the thermal gradient, where the EOFs show the influence of the annual scale in both modes, with the only difference being that the first describes the meridional gradient as the dominant signal (66.2%), and the second shows the zonal behavior of the thermal gradient (16.6%). The summer weakening of the wind stress and Ekman speed is the product of the irregular shape of the coastline, the extension of the continental shelf, and the divergence of the North American monsoon around 21°N, whereas during the rest of the year an intensification of these parameters prevailed in front of Cabo Corrientes. On the other hand, the intense geostrophic flow in summer does not contribute to the increase in SST on the continental shelf because it diverges around 22.5°N. Likewise, during the winter, the formation of a cyclonic geostrophic gyre located inside the continental shelf, between the coast and the Marías Islands, stands out.  相似文献   

10.
This paper reports the diurnal, seasonal, and long term variability of the E layer critical frequency (foE) and peak height (hmE) derived from Digisonde measurements from 2009 to 2016 at the low-middle latitude European station of Nicosia, Cyprus (geographical coordinates: 35°N, 33°E, geomagnetic lat. 29.38°N, I = 51.7°). Manually scaled monthly median values of foE and hmE are compared with IRI-2012 predictions with a view to assess the predictability of IRI. Results show that in general, IRI slightly overestimates foE values both at low and high solar activity. At low solar activity, overestimations are mostly limited to 0.25?MHz (equivalent electron density, 0.775?×?103?el/m?3) but can go as high as 0.5?MHz (equivalent electron density, 3.1?×?103?el/m?3, during noon) around equinox. In some months, underestimations, though sporadic in nature, up to 0.25?MHz are noted (mostly during sunrise and sunset). At high solar activity, a similar pattern of over-/underestimation is evident. During the entire period of study, over-/under estimations are mostly limited to 0.25?MHz. In very few cases, these exceed 0.25?MHz but are limited to 0.5?MHz. Analysis of hmE reveals that: (1) hmE remains almost constant during ±2 to ±4?h around local noon, (2) hmE values are higher in winter than in spring, summer and autumn, (3) there are two maxima near sunrise and sunset with a noontime minimum in between. During the entire period of study, significant differences between observed hmE and the IRI predictions have been noted. IRI fails to predict hmE and outputs a constant value of 110?km, which is higher than most of the observed values. Over- and under estimations range from 3 to 13?km and from 0 to 3?km respectively.  相似文献   

11.
Simultaneous measurements taken by instruments on the Atmosphere Explorer - C satellite were used to compare electron and proton particle energy deposition, Joule heating, and neutral density perturbations in the region of the cusp.Altitude profiles of Joule heating, electron energy deposition, and electron density are derived using measurements taken by the satellite as input to a computer model. Electric fields are calculated using ion drift measurements. Figures are presented for a representative orbital pass.A peak Joule heating rate of 0.059 Wm?2 occurred in the cusp region with a peak of 0.025 Wm?2 in the evening auroral electrojet. Peak volume heating rates corresponding to these regions were 1.4 × 10?6Wm?3 and 7.10?7 Wm?3, both occurring at an altitude of 115 km. Particle energy deposition was about an order of magnitude less than Joule heating. Large neutral density perturbations are related to regions of heating.  相似文献   

12.
A time series of remotely-sensed chlorophyll a (chl a) in 1997–2010 was evaluated to determine mechanisms of phytoplankton variation in recent decade in the South China Sea (SCS) and the western North Pacific subtropical gyre (WNPSG). Satellite-derived sea surface temperature (SST) and aerosol optical thickness (AOT) were used as proxies for vertical nutrient supply and atmospheric aerosol, respectively. Chl a in the WNPSG was not significantly correlated with SST (r = 0.18, p > 0.05), but was with AOT (r = 0.31, p < 0.05), indicating the chl a was influenced by atmospheric deposition. Chl a in the SCS was negatively correlated with SST (r = −0.60, p < 0.05) and was positively with AOT (r = 0.20, p < 0.05). The correlation between AOT and chl a in the SCS does not reflect a major contribution from atmospheric deposition to chl a; instead, the relationship resulted from concurrence of the peaks of AOT and wind speed, which drive water mixing and nutrient supply. Consequently, chl a in the SCS would be regulated primarily by the nutrient supply from deep waters. Because SST was controlled by the ENSO teleconnection in the SCS, the chl a was coupled with ENSO events. The present study demonstrated that interannual phytoplankton variation could be controlled by different factors even in neighboring oligotrophic regions.  相似文献   

13.
The moderate resolution imaging spectroradiometer (MODIS) on board the Aqua satellite measures visible and infrared radiation in 36 wavebands, providing simultaneous images of sea-surface temperature (SST) and chlorophyll-a (chl-a) concentration in the upper meters of the sea. For the first time, truly synoptic SST and chl-a- concentration images are available. These images are daily and of 1.1-km resolution.The strong contrasts in sea-surface temperature and surface chlorophyll-a concentration over the southwest Atlantic make satellite infrared and color images particularly appropriate tools for studying the Brazil–Malvinas (B/M) Current confluence. We examine two years (July, 2002–June, 2004) of Aqua/MODIS infrared and color images to document the precise structure of the B/M confluence simultaneously in SST and chl-a.We first compared MODIS weekly data with simultaneous independent satellite data. Spatial and temporal distributions are similar for both SST and color. Differences between MODIS and SeaWiFS (sea-viewing wide field-of-view sensor) are large in pigment-rich regions along the coast and shelf. Here, we focused on the offshore region where differences are small.For each season, exceptionally cloud-free 1.1-km resolution MODIS images showed two thermal fronts, one corresponding to the Brazil Current’s southernmost limit, the other, to the Malvinas Current’s northernmost limit. These two fronts remained quite close to each other (within 50 km) and were separated by water with an SST and chl-a concentration typical of the continental shelf waters. In spring, the water rich in chl-a from the platform is squeezed between the two currents and entrained away from the coast in between the two thermal fronts. In the frontal region, SST gradient maxima trace the contour of the chl-a-rich water.Enlargements of the frontal region and of the turbulent region downstream of the frontal collision are presented and analyzed. MODIS documents in an unprecedented way the SST and chl-a filaments as they are distorted and mixed by meso- and sub-mesoscale structures in the strain-dominated region of the B/M confluence. It is suggested that a substantial part of the chl-a local maximum in the Malvinas return flow is of continental-shelf origin.  相似文献   

14.
IPM has detected nightside 135.6 nm emission enhancements over a wide latitude range, from the sub-auroral latitudes to the equatorial regions during geomagnetic storms. Our work, presented in this paper, uses the data of IPM to understand these 135.6 nm emission enhancements during of geomagnetic storms and studies the variations of total electron content (TEC) and the F2 layer peak electron density (NmF2) in the region of enhanced emissions. Middle and low latitude emission enhancements are presented during several medium storms in 2018. The variations of both the integrated electron content (IEC) derived from the nighttime OI 135.6 nm emission by IPM and TEC from the International GNSS Service (IGS) relative to the daily mean of magnetically quiet days of per each latitude bin (30°≦geographic latitude < 40°, 15°≦geographic latitude < 30°, 0°≦geographic latitude < 15°, ?15°≦geographic latitude < 0°, ?30°≦geographic latitude < -15°, ?40°≦geographic latitude < -30°) are investigated and show that on magnetically storm day, IEC by IPM always increases, while TEC from IGC may increase or decrease. Even if both increase, the increase of IEC is greater than that of TEC. From the comparison of IEC and TEC during magnetic storms, it can be seen that the enhancement of the nighttime 135.6 nm emissions is not entirely due to the ionospheric change. The time of IEC enhancements at each latitude bin is in good agreement, which mainly corresponds to the main phase time of the geomagnetic storm event and lasts until the recovery phase. The available ground-based ionosonde stations provide the values of NmF2 which match the 135.6 nm emissions measured by IPM in space and time. The variations of NmF2 squared can characterize the variations of the OI 135.6 nm emissions caused by O+ ions and electrons radiative recombination. The study results show that the OI 135.6 nm emission enhancements caused by O+ ions and electrons radiative recombination (where NmF2 squared increases) are obviously a contribution to the measured 135.6 nm emission enhancements by IPM. The contribution accounts for at least one of all contributions to the measured 135.6 nm emission enhancements by IPM. However, where the NmF2 squared provided by ionosonde decrease or change little (where the OI 135.6 nm emissions cause by O+ ions and electrons radiative recombination also decrease or change little), the emission enhancements measured by IPM at storm-time appear to come from the contributions of other mechanisms, such as energetic neutral atoms precipitation, or the mutual neutralization emission (O+ + O-→2O + h? (135.6 nm)) which also occupies a certain proportion in 135.6 nm airglow emission at night.  相似文献   

15.
The transport of ions from the polar ionosphere to the inner magnetosphere during stormtime conditions has been computed using a Monte Carlo diffusion code. The effect of the electrostatic turbulence assumed to be present during the substorm expansion phase was simulated by a process that accelerated the ions stochastically perpendicular to the magnetic field with a diffusion coefficient proportional to the energization rate of the ions by the induced electric field. This diffusion process was continued as the ions were convected from the plasma sheet boundary layer to the double-spiral injection boundary. Inward of the injection boundary, the ions were convected adiabatically. By using as input an O+ flux of 2.8 × 108 cm?2 s?1 (w > 10 eV) and an H+ flux of 5.5 × 108 cm?2 s?1 (w > .63 eV), the computed distribution functions of the ions in the ring current were found to be in good agreement, over a wide range in L (4 to 8), with measurements made with the ISEE-1 satellite during a storm. This O+ flux and a large part of the H+ flux are consistent with the DE satellite measurements of the polar ionospheric outflow during disturbed times.  相似文献   

16.
Air temperature is one of the most important parameters in environmental, agricultural and water resources studies. This information is not usually always available at the required temporal and spatial resolution. The air temperature is measured at a fixed point in the meteorological stations which are dispersed and may not have the appropriate spatial resolution needed for many applications. On the other hand, MODIS satellite images have relatively acceptable spatial resolution specially for use in environmental studies. There is a methodology with which the near surface air temperature can be extracted from MODIS images at the satellite passing time with an acceptable accuracy. The goal in this study is to find a way to predict the air temperature in times after/before the satellite passing time. The procedure consists of two steps. In the first step, the relationship between the air temperature at a time in a synoptic station and the air temperature in other times up to 5 h later were modeled. In the second step, using these built up relationships, the air temperature extracted from the satellite image at the passing time was extrapolated to the next hours. Finally, the results of this extrapolation method were evaluated using the air temperatures measured at those hours and in the pixels containing some other meteorological stations. The error of the method when applied to a relatively homogeneous surface cover was about 1.5 °C. This error when applied to the next hours, was below 2 °C up to 5 h after satellite passing time. This method can be useful in some agricultural and horticultural applications in which both the spatial and temporal resolution are needed simultaneously. This product is a useful tool for frost prediction, a phenomenon that usually happens at night or early in the morning.  相似文献   

17.
The event of 2009–2011 El Niño Southern Oscillation (ENSO) provides an opportunity to gain insight into the biological variability of the equatorial Pacific Ocean for an entire ENSO cycle with satellite and in situ observations. Even though El Niño and La Niña in general led to respectively weakened and enhanced chlorophyll-a concentration and net primary production (NPP) along the equatorial Pacific Ocean during the 2009–2011 ENSO cycle, biological responses were highly disparate along the equator and attributed to different driving mechanisms. In the eastern equatorial Pacific east of 150°E, the El Niño-La Niña biological change was in general small except for the transition period even though sea surface temperature (SST) showed over ∼5 °C drop from El Niño to La Niña. In the central-eastern (170°W–140°W) equatorial Pacific, moderate change of biological activity is attributed to the changes of thermocline driven by the eastward propagating equatorial Kelvin waves and changes of zonal currents and undercurrents. Highest biological response in this ENSO cycle was located in the central (170°E–170°W) and central-western (150°E–170°E) equatorial Pacific with quadruple chlorophyll-a concentration and over ∼400 mg C m−2 d−1 increase of NPP from El Niño in 2009 to La Niña in 2010. However, spatial pattern of ENSO biological variability as represented with NPP is not exactly the same as chlorophyll-a variability. Wind-driving mixing of nutrients and eastward advection of the oligotrophic warm pool waters are attributed to this significant biological variability in this region.  相似文献   

18.
The present paper has used a comprehensive approach to study atmosphere pollution sources including the study of vertical distribution characteristics, the epicenters of occurrence and transport of atmospheric aerosol in North-West China under intensive dust storm registered in all cities of the region in April 2014. To achieve this goal, the remote sensing data using Moderate Resolution Imaging Spectroradiometer satellite (MODIS) as well as model-simulated data, were used, which facilitate tracking the sources, routes, and spatial extent of dust storms. The results of the study have shown strong territory pollution with aerosol during sandstorm. According to ground-based air quality monitoring stations data, concentrations of PM10 and PM2.5 exceeded 400?μg/m3 and 150?μg/m3, respectively, the ratio PM2.5/PM10 being within the range of 0.123–0.661. According to MODIS/Terra Collection 6 Level-2 aerosol products data and the Deep Blue algorithm data, the aerosol optical depth (AOD) at 550?nm in the pollution epicenter was within 0.75–1. The vertical distribution of aerosols indicates that the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) 532?nm total attenuates backscatter coefficient ranges from 0.01 to 0.0001?km?1?×?sr?1 with the distribution of the main types of aerosols in the troposphere of the region within 0–12.5?km, where the most severe aerosol contamination is observed in the lower troposphere (at 3–6?km). According to satellite sounding and model-simulated data, the sources of pollution are the deserted regions of Northern and Northwestern China.  相似文献   

19.
It is well known that tropical cyclones can cause upwelling, decrease of sea surface temperature, increase of chlorophyll-a (Chl-a) concentration and enhancement of primary production. But little is known about the response of dissolved oxygen (DO) concentration to a typhoon in the open ocean. This paper investigates the impact of a typhoon on DO concentration and related ecological parameters using in situ and remote sensing data. The in situ data were collected 1 week after the passage of the super-typhoon Nanmadol in the northern South China Sea in 2011. An increase in DO concentration, accompanied by a decrease in water temperature and an increase in salinity and Chl-a concentration, was measured at sampling stations close to the typhoon track. At these stations, maximum DO concentration was found at a depth of around 5 m and maximum Chl-a concentration at depths between 50 and 75 m. The layer of high DO concentration extends from the surface to a depth of 35 m and the concentrations stay almost constant down to this depth. Due to the passage of the typhoon, also a large sea level anomaly (21.6 cm) and a high value of Ekman pumping velocity (4.0 × 10−4 m s−1) are observed, indicating upwelling phenomenon. At the same time, also intrusion of Kuroshio waters in the form of a loop current into the South China Sea (SCS) was observed. We attribute the increase of DO concentration after the passage of the typhoon to three effects: (1) entrainment of oxygen from the air into the upper water layer and strong vertical mixing of the water body due to the typhoon winds, (2) upwelling of cold nutrient-rich water which stimulates photosynthesis of phytoplankton and thus the generation of oxygen, which also increases the DO concentration due to cold water since the solubility of oxygen increase with decreasing water temperature, and, possibly, (3) transport of DO enriched waters from the Western Pacific to the SCS via the intrusion of Kuroshio waters.  相似文献   

20.
Four versions of a steady-state quiet D-region model are presented. They differ from each other as a result of latitudinal differences in total neutral particle concentrations, nitric oxide concentrations and cosmic ray ionization rates. The total ion concentration profiles of all four versions have minima near 70 km which range from about 108 m?3 at high latitudes to 3.5 × 107 m?3 at equatorial latitudes for a solar zenith angle of 60°. Neutral density differences among the four cases result in important vertical shifts for the respective D-region profiles relative to one another. A “C-layer” is evident for the high and mild-latitude models at large solar zenith angles. The altitude where the negative ion/electron concentrations ratio is unity varies from about 63 to 67 km. The computed results are compared briefly with the extensive data base in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号