首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A time series of remotely-sensed chlorophyll a (chl a) in 1997–2010 was evaluated to determine mechanisms of phytoplankton variation in recent decade in the South China Sea (SCS) and the western North Pacific subtropical gyre (WNPSG). Satellite-derived sea surface temperature (SST) and aerosol optical thickness (AOT) were used as proxies for vertical nutrient supply and atmospheric aerosol, respectively. Chl a in the WNPSG was not significantly correlated with SST (r = 0.18, p > 0.05), but was with AOT (r = 0.31, p < 0.05), indicating the chl a was influenced by atmospheric deposition. Chl a in the SCS was negatively correlated with SST (r = −0.60, p < 0.05) and was positively with AOT (r = 0.20, p < 0.05). The correlation between AOT and chl a in the SCS does not reflect a major contribution from atmospheric deposition to chl a; instead, the relationship resulted from concurrence of the peaks of AOT and wind speed, which drive water mixing and nutrient supply. Consequently, chl a in the SCS would be regulated primarily by the nutrient supply from deep waters. Because SST was controlled by the ENSO teleconnection in the SCS, the chl a was coupled with ENSO events. The present study demonstrated that interannual phytoplankton variation could be controlled by different factors even in neighboring oligotrophic regions.  相似文献   

2.
Recent studies have shown land, ocean, atmosphere and ionospheric anomalies prior to earthquakes. The optical and microwave sensors onboard satellites are now capable of monitoring land, ocean, atmosphere and ionosphere which provide changes associated with natural hazards. In this paper, we have analyzed remote sensing data of the ocean coasts lying near the epicenters of recent four major earthquakes (Gujarat of January 26, 2001, Andaman of September 13, 2002, Algeria of May 21, 2002 and Bam, Iran earthquake of December 26, 2003), our detailed analysis shows increase of Chlorophyll-a (Chl-a) concentration associated with these recent earthquakes. The increase of Chl-a concentration is due to the change in sea surface temperature (SST) associated with the changes in stress regime in the epicentral region which is responsible for modifying the in situ thermal structure of the water and enhancing the upwelling of nutrient-rich water. The increase of Chl-a concentration also shows one to one relation with the increase of surface latent heat flux (SLHF) which is found to increase significantly prior to the earthquake events. Due to cloud cover, it has not been possible to quantify the effect of the chlorophyll concentrations associated with the earthquake events for each successive day during an event. However, the limited data from the adjacent oceanic regions provide strong evidence of the increase in Chl-a concentration. The monitoring of chlorophyll concentrations with higher spatial and temporal resolutions may provide early information about impending coastal earthquakes.  相似文献   

3.
We compared 8 years of ozone measurements taken at Lindau (51.66° N, 10.13° E) at altitudes between 40 and 60 km using the microwave technique with the CIRA ozone reference model that was established 20 years ago (Keating et al., 1990). We observed a remarkable decrease in ozone density in the stratopause region (i.e., an altitude of 50 km), but the decrease in ozone density in the middle mesosphere (i.e., up to 60 km in altitude) is slight. Likewise, we observed only a moderate decrease in the atmospheric region below the stratopause. Other studies have found the strongest ozone decrease at 40 km and a more moderate decrease at 50 km, which is somewhat in contradiction to our results. This decrease in ozone density also strongly depends on the season. Similar results showed model calculations using the GCM COMMA-IAP when considering the increase in methane. In the lower mesosphere/stratopause region, the strongest impact on the concentration of odd oxygen (i.e., O3 and O) was observed due to a catalytic cycle that destroys odd oxygen, including atomic oxygen and hydrogen radicals. The hydrogen radicals mainly result from an increase in water vapor with the growing anthropogenic release of methane. The finding suggesting that the stratopause region is apparently attacked more strongly by the water vapor increase has been interpreted in terms of the action of this catalytic cycle, which is most effective near the stratopause and amplified by a positive feedback between the ozone column density and the ozone dissociation rate, thereby chemically influencing the ozone density. However, the rising carbon dioxide concentration cools the middle atmosphere, thereby damping the ozone decline by hydrogen radicals.  相似文献   

4.
A CELSS Experimental Facility was developed two years ago. It contains a volume of about 40.0 m3 and a cultivating area of about 8.4 m2; its interior atmospheric parameters such as temperature, relative humidity, oxygen concentration, carbon dioxide concentration, total pressure, lighting intensity, photoperiod, water content in the growing-matrix, CO2-added accumulative amount, O2-released accumulative amount and ethylene concentration are all controlled and logged automatically and effectively; its growing system consists of two rows of racks along its left-and-right sides separately, each side holds two upper-and-lower layers, and the vertical distance of each growing bed can be adjusted automatically and independently; lighting sources consist of both red (95%) and blue (5%) light-emitting diodes (LED), and the average lighting intensity of each lamp bank at 20-cm distance position under it, reaches to 255.0 μmol m−2 s−1. After that, demonstrating tests were carried out and were finally followed by growing lettuce in the facility. The results showed that all subsystems operated well and all parameters were controlled automatically and efficiently. The lettuce plants in the system could grow much well. Successful development of this system laid a necessary foundation for future larger-scale studies on CELSS integration technique.  相似文献   

5.
Monitoring of spatial and temporal distribution of chlorophyll (Chl-a) concentrations in the aquatic milieu is always challenging and often interesting. However, the recent advancements in satellite digital data play a significant role in providing outstanding results for the marine environmental investigations. The present paper is aimed to review ‘remote sensing research in Chinese seas’ within the period of 24 years from 1978 to 2002. Owing to generalized distributional pattern, the Chl-a concentrations are recognized high towards northern Chinese seas than the southern. Moreover, the coastal waters, estuaries, and upwelling zones always exhibit relatively high Chl-a concentrations compared with offshore waters. On the basis of marine Chl-a estimates obtained from satellite and other field measured environmental parameters, we have further discussed on the applications of satellite remote sensing in the fields of harmful algal blooms (HABs), primary production and physical oceanographic currents of the regional seas. Concerned with studies of HABs, satellite remote sensing proved more advantageous than any other conventional methods for large-scale applications. Probably, it may be the only source of authentic information responsible for the evaluation of new research methodologies to detect HABs. At present, studies using remote sensing methods are mostly confined to observe algal bloom occurrences, hence, it is essential to coordinate the mechanism of marine ecological and oceanographic dynamic processes of HABs using satellite remote sensing data with in situ measurements of marine environmental parameters. The satellite remote sensing on marine environment and HABs is believed to have a great improvement with popular application of technology.  相似文献   

6.
The event of 2009–2011 El Niño Southern Oscillation (ENSO) provides an opportunity to gain insight into the biological variability of the equatorial Pacific Ocean for an entire ENSO cycle with satellite and in situ observations. Even though El Niño and La Niña in general led to respectively weakened and enhanced chlorophyll-a concentration and net primary production (NPP) along the equatorial Pacific Ocean during the 2009–2011 ENSO cycle, biological responses were highly disparate along the equator and attributed to different driving mechanisms. In the eastern equatorial Pacific east of 150°E, the El Niño-La Niña biological change was in general small except for the transition period even though sea surface temperature (SST) showed over ∼5 °C drop from El Niño to La Niña. In the central-eastern (170°W–140°W) equatorial Pacific, moderate change of biological activity is attributed to the changes of thermocline driven by the eastward propagating equatorial Kelvin waves and changes of zonal currents and undercurrents. Highest biological response in this ENSO cycle was located in the central (170°E–170°W) and central-western (150°E–170°E) equatorial Pacific with quadruple chlorophyll-a concentration and over ∼400 mg C m−2 d−1 increase of NPP from El Niño in 2009 to La Niña in 2010. However, spatial pattern of ENSO biological variability as represented with NPP is not exactly the same as chlorophyll-a variability. Wind-driving mixing of nutrients and eastward advection of the oligotrophic warm pool waters are attributed to this significant biological variability in this region.  相似文献   

7.
Frequency fluctuations of the Galileo S-band radio signal were recorded nearly continuously during the spacecraft’s solar conjunction from December 1996 to February 1997. A strong propagating disturbance, most probably associated with a coronal mass ejection (CME), was detected on 7 February when the radio ray path proximate point was on the west solar limb at about 54 solar radii from the Sun. The CME passage through the line of sight is characterized by a significant increase in the fluctuation intensity of the recorded frequency and by an increase in the plasma speed from about 234 km s−1 up to about 755 km s−1. These velocity estimates are obtained from a correlation analysis of frequency fluctuations recorded simultaneously at two widely-separated ground stations. The density turbulence power spectrum is found to steepen behind the CME front. The Galileo radio-sounding data are compared with SOHO/LASCO observations of the CME in the corona and with WIND spacecraft data near the Earth’s orbit.  相似文献   

8.
To achieve sustainable, healthy closed ecological systems requires solutions to challenges of closing the water cycle – recycling wastewater/irrigation water/soil medium leachate and evaporated water and supplying water of required quality as needed for different needs within the facility. Engineering Biosphere 2, the first multi-biome closed ecological system within a total airtight footprint of 12,700 m2 with a combined volume of 200,000 m3 with a total water capacity of some 6 × 106 L of water was especially challenging because it included human inhabitants, their agricultural and technical systems, as well as five analogue ecosystems ranging from rainforest to desert, freshwater ecologies to saltwater systems like mangrove and mini-ocean coral reef ecosystems. By contrast, the Laboratory Biosphere – a small (40 m3 volume) soil-based plant growth facility with a footprint of 15 m2 – is a very simplified system, but with similar challenges re salinity management and provision of water quality suitable for plant growth. In Biosphere 2, water needs included supplying potable water for people and domestic animals, irrigation water for a wide variety of food crops, and recycling and recovering soil nutrients from wastewater. In the wilderness biomes, providing adequately low salinity freshwater terrestrial ecosystems and maintaining appropriate salinity and pH in aquatic/marine ecosystems were challenges. The largest reservoirs in Biosphere 2 were the ocean/marsh with some 4 × 106 L, soil with 1 to 2 × 106 l, primary storage tank with 0 to 8 × 105 L and storage tanks for condensate and soil leachate collection and mixing tanks with a capacity of 1.6 × 105 L to supply irrigation for farm and wilderness ecosystems. Other reservoirs were far smaller – humidity in the atmosphere (2 × 103 L), streams in the rainforest and savannah, and seasonal pools in the desert were orders of magnitude smaller (8 × 104 L). Key technologies included condensation from humidity in the air handlers and from the glass space frame to produce high quality freshwater, wastewater treatment with constructed wetlands and desalination through reverse osmosis and flash evaporation were key to recycling water with appropriate quality throughout the Biosphere 2 facility. Wastewater from all human uses and the domestic animals in Biosphere 2 was treated and recycled through a series of constructed wetlands, which had hydraulic loading of 0.9–1.1 m3 day−1 (240–290 gal d−1). Plant production in the wetland treatment system produced 1210 kg dry weight of emergent and floating aquatic plant wetland which was used as fodder for the domestic animals while remaining nutrients/water was reused as part of the agricultural irrigation supply. There were pools of water with recycling times of days to weeks and others with far longer cycling times within Biosphere 2. By contrast, the Laboratory Biosphere with a total water reservoir of less than 500 L has far quicker cycling rapidity: for example, atmospheric residence time for water vapor was 5–20 min in the Laboratory Biosphere vs. 1–4 h in Biosphere 2, as compared with 9 days in the Earth’s biosphere. Just as in Biosphere 2, humidity in the Laboratory Biosphere amounts to a very small reservoir of water. The amount of water passing through the air in the course of a 12-h operational day is two orders of magnitude greater than the amount stored in the air. Thus, evaporation and condensation collection are vital parts of the recycle system just as in Biosphere 2. The water cycle and sustainable water recycling in closed ecological systems presents problems requiring further research – such as how to control buildup of salinity in materially closed ecosystems and effective ways to retain nutrients in optimal quantity and useable form for plant growth. These issues are common to all closed ecological systems of whatever size, including planet Earth’s biosphere and are relevant to a global environment facing increasing water shortages while maintaining water quality for human and ecosystem health. Modular biospheres offer a test bed where technical methods of resolving these problems can be tested for feasibility.  相似文献   

9.
The main objective of a life support system for space missions is to supply a crew with food, water and oxygen, and to eliminate their wastes. The ultimate goal is to achieve the highest degree of closure of the system using controlled processes offering a high level of reliability and flexibility. Enhancement of closure of a biological life support system (BLSS) that includes plants relies on increased regeneration of plant waste, and utilization of solid and liquid human wastes. Clearly, the robustness of a BLSS subjected to stress will be substantially determined by the robustness of the plant components of the phototrophic unit. The aim of the present work was to estimate the heat resistance of two plants (wheat and lettuce) grown on human wastes. Human exometabolites mineralized by hydrogen peroxide in an electromagnetic field were used to make a nutrient solution for the plants. We looked for a possible increase in the heat tolerance of the wheat plants using changes in photosynthetically active radiation (PAR) intensity during heat stress. At age 15 days, plants were subjected to a rise in air temperature (from 23 ± 1 °C to 44 ± 1 °С) under different PAR intensities for 4 h. The status of the photosynthetic apparatus of the plants was assessed by external СО2 gas exchange and fluorescence measurements. The increased irradiance of the plants during the high temperature period demonstrated its protective action for both the photosynthetic apparatus of the leaves and subsequent plant growth and development. The productivity of the plants subjected to temperature changes at 250 W m−2 of PAR did not differ from that of controls, whereas the productivity of the plants subjected to the same heat stress but in darkness was halved.  相似文献   

10.
In this paper we explore the possibilities of applying satellite ocean colour (OC) observations and SST to study the changes in the conditions of hypoxia in the near-bottom water in the western part of Peter the Great Bay. Near-bottom water hypoxia occurs in water bodies with increased organic matter influx when the dissolved oxygen (DO) consumed at its oxidation is not restored. Consumption of most DO is usually attributed to the oxidation of organic matter formed as a result of increased algae growth during water eutrophication. Satellite data on indicators of phytoplankton (chlorophyll-a concentration (Chl) and fluorescence (FLH)) allow to analyze the spatial-temporal changes of this substation. Coloured dissolved organic matter (CDOM), non-algal particles (NAP) influence on satellite Chl estimates and also on near-bottom water hypoxia formation. This study analyzes daily, seasonal, and inter-annual changes in the distributions of indicators (Chl, FLH, the coefficients of light absorption by coloured detrital matter (aCDM) and light backscattering by suspended particles (bbp)), based on the instant satellite OC data from MODIS-Aqua. Data on the Chl, the sea surface temperature (SST) from the MODIS-Aqua, the precipitation from the TRMM satellite and the hydrometeorological stations (HMSs), the wind speed and direction from HMS “Vladivostok” are used to study the influence of hydrometeorological conditions on the Chl values. These distributions were compared with the literary information based on field observations of the hypoxia cases in the same area and with the changes in the vertical DO, Chl, temperature, salinity distribution obtained by coastal expeditions in October-November 2010 and February-March 2011. Significant interrelations within 95% confidence level between the satellite Chl, FLH values calculated at the MUMM atmospheric correction and in situ Chl values obtained in the autumn of 2010 were reached separately for the cases with winds of northern and southern directions with the correlation coefficients of 0.71, 0.48 and 0.49, 0.71, respectively. Significant dependences of Chl on SST and Chl on wind speed explained by the influence of continental runoff and water ventilation were obtained. Therefore, the changes of Chl reflect the changes of hypoxic conditions in the near-bottom water. In Amursky Bay the onset of hypoxia was at the Chl and SST values equal to 4 mg m?3 and 13 °C (↑ – at increasing SST); near Furugelm Island it was at 1.6 mg m?3 and 25 °C (↑), 1 mg m?3 and 21 °C (↓). The difference in the Chl values was reflected in the hypoxia onset timings that were the beginning of June (2011), August (2013), and September (2014), respectively. The water flow from the eastern coast of Amursky Bay in early August of 2013 recorded from the OC and SST satellite imagers appeared in an additional hypoxic zone. Decreased OC characteristics in the runoff of the Razdolnaya River in August-September of 2014 were a sign of hypoxia at its mouth. Near Furugelm Island the hypoxia destruction (increase in the DO level from 1 to 4.5 ml L?1) was observed at the Chl of 0.9 mg m?3 and SST = 18 °C (↓). At the autumn maximum of Chl equal to 1.7 mg m?3 and SST = 4 °C (↓) in mid-November the DO level here increased to 8 ml L?1. In Amursky Bay, short-term destructions/weakening of hypoxia manifested themselves in sharp increases of Chl. At that, the ratio between the Chl value and the approximation level was equal to 2 and higher for SST equal to 22–25 °C (↑), to 0.9 and higher for SST equal to 5–13 °C (↓). With the water stratification destruction in temperature and the noticeable weakening of the stratification in salinity (mid-November), the hypoxia destructed (the DO level increased from 2 to 6 ml L?1). In this case, Chl and SST were about 3 mg m?3 and 5 °C (↓).  相似文献   

11.
Higher plants, as one of the essential biological components of CELSS, can supply food, oxygen and water for human crews during future long-duration space missions and Lunar/Mars habitats. In order to select suitable leaf vegetable varieties for our CELSS Experimental Facility (CEF), five varieties of lettuce (“Nenlvnaiyou”, “Dasusheng”, “Naichoutai”, “Dongfangkaixuan” and “Siji”), two of spinach (“Daye” and “Quanneng”), one of rape (“Jingyou No. 1”) and one of common sowthistle were grown and compared on the basis of edible biomass, and nutrient content. In addition, two series of experiments were conducted to study single leaf photosynthetic rates and transpiration rates at 30 days after planting, one which used various concentrations of CO2 (500, 1000, 1500 and 2000 μmol mol−1) and another which used various light intensities (100, 300, 500 and 700 μmol m−2 s−1). Results showed that lettuce cvs. “Nenlvnaiyou”, “Siji” and “Dasusheng” produced higher yields of edible biomass; common sowthisle would be a good source of β-carotene for the diet. Based on the collective findings, we selected three varieties of lettuce (“Nenlvnaiyou”, “Dasusheng” and “Siji”) and one of common sowthistle as the candidate crops for further research in our CEF. In addition, elevated CO2 concentration increased the rates of photosynthesis and transpiration, and elevated light intensity increased the rate of photosynthesis for these varieties. These results can be useful for determining optimal conditions for controlling CO2 and water fluxes between the crops and the overall CELSS.  相似文献   

12.
Chlorophyll and suspended sediment concentrations (SSC) and sea surface temperature (SST) are important parameters in assessing the productivity of coastal regions. Numerous rivers flow into the eastern (Ganga, Subernarekha, Mahanadi, Godavari, Krishna, Penner, and Kaveri) and western (Narmada, Tapti, and Indus) coasts of the Indian sub-continent. Using IRS P4 (Oceansat-1) Ocean Color Monitor (OCM) and Moderate Resolution Imaging Spectroradiometer (MODIS) data, we have retrieved chlorophyll, calcite, and SSC near the mouth of these rivers for the period during 2000–2004. The maxima of chlorophyll-a concentrations at the river mouth is much higher for the Himalayan and north India rivers (Ganga, Subernarekha, Mahanadi, and Indus) (10–14 mg/m3) compared to rivers in the southern parts of India (Kaveri and Penner) (∼4 mg/m3). The maxima of calcite concentration (∼45 moles/m3), chlorophyll (∼14 mg/m3), and sediment concentrations (∼9 g/m3) near river mouth are found to be influenced by river discharges (Ganga and Brahmaputra) during the monsoon season. The calcite concentration (∼45 moles/m3) at the mouth of Ganga river shows a major peak with the onset of monsoon season (June–July) followed by a maxima in chlorophyll-a with a time lag of 1–2 months. The Krishna, Kaveri, and Penner rivers show low chlorophyll concentrations (3–8 mg/m3), high calcite (0–40 moles/m3), and low SSC (<3 g/m3) compared to Narmada and Tapti rivers (chlorophyll-a 12–14 mg/m3, calcite 0–2 moles/m3, and SSC 13–19 g/m3). The Indus river shows similar behavior (maxima of chlorophyll ∼13 mg/m3 and SSC ∼8 g/m3) with respect to Ganga river except for high calcite concentration during winter months (∼25 moles/m3). The characteristics of the chlorophyll, calcite, and SSC at the mouth of these rivers show spatial and temporal variability along the eastern and westerns coasts of India which are found to differ widely. A comparison of the chlorophyll concentrations using OCM and MODIS data shows low chlorophyll concentrations in the Bay of Bengal as compared to the Arabian Sea.  相似文献   

13.
A mixed crop consisting of cowpeas, pinto beans and Apogee ultra-dwarf wheat was grown in the Laboratory Biosphere, a 40 m3 closed life system equipped with 12,000 W of high pressure sodium lamps over planting beds with 5.37 m2 of soil. Similar to earlier reported experiments, the concentration of carbon dioxide initially increased to 7860 ppm at 10 days after planting due to soil respiration plus CO2 contributed from researchers breathing while in the chamber for brief periods before plant growth became substantial. Carbon dioxide concentrations then fell rapidly as plant growth increased up to 29 days after planting and subsequently was maintained mostly in the range of about 200–3000 ppm (with a few excursions) by CO2 injections to feed plant growth. Numerous analyses of rate of change of CO2 concentration at many different concentrations and at many different days after planting reveal a strong dependence of fixation rates on CO2 concentration. In the middle period of growth (days 31–61), fixation rates doubled for CO2 at 450 ppm compared to 270 ppm, doubled again at 1000 ppm and increased a further 50% at 2000 ppm. High productivity from these crops and the increase of fixation rates with elevated CO2 concentration supports the concept that enhanced CO2 can be a useful strategy for remote life support systems. The data suggests avenues of investigation to understand the response of plant communities to increasing CO2 concentrations in the Earth’s atmosphere. Carbon balance accounting and evapotranspiration rates are included.  相似文献   

14.
Plants can provide a means for removing carbon dioxide (CO2) while generating oxygen (O2) and clean water for life support systems in space. To study this, 20 m2 stands of potato (Solanum tuberosum L.) plants were grown in a large (113 m3 vol.), atmospherically closed chamber. Photosynthetic uptake of CO2 by the stands was detected about 10 DAP (days after planting), after which photosynthetic rates rose rapidly as stand ground cover and total light interception increased. Photosynthetic rates peaked ca. 50 DAP near 45 μmol CO2 m−2 s−1 under 865 μmol m−2 s−1 PPF (average photosynthetic photon flux), and near 35 μmol CO2 m−2 s−1 under 655 μmol m−2 s−1 PPF. Short term changes in PPF caused a linear response in stand photosynthetic rates up to 1100 μmol m−2 s−1 PPF, with a light compensation point of 185 μmol m−2 s−1 PPF. Comparisons of stand photosynthetic rates at different CO2 concentrations showed a classic C3 response, with saturation occurring near 1200 μmol mol−1 CO2 and compensation near 100 μmol mol−1 CO2. In one study, the photoperiod was changed from 12 h light/12 h dark to continuous light at 58 DAP. This caused a decrease in net photosynthetic rates within 48 h and eventual damage (scorching) of upper canopy leaves, suggesting the abrupt change stressed the plants and/or caused feedback effects on photosynthesis. Dark period (night) respiration rates increased during early growth as standing biomass increased and peaked near 9 μmol CO2 m−2 s−1 ca. 50 DAP, after which rates declined gradually with age. Stand transpiration showed a rapid rise with canopy ground cover and peaked ca. 50 DAP near 8.9 L m−2 d−1 under 860 μmol m−2 s−1 PPF and near 6.3 L m−2 d−1 under 650 μmol m−2 s−1 PPF. Based on the best photosynthetic rates from these studies, approximately 25 m2 of potato plants under continuous cultivation would be required to support the CO2 removal and O2 requirements for one person.  相似文献   

15.
The potential effect of the lunar exosphere on the near-ultraviolet sky background emission is predicted for Lunar-based Ultraviolet Telescope (LUT: a funded Chinese scientific payload for the Chang’e-III mission). Using the upper limit on the OH concentration inferred from the recent MIP CHACE results, our calculations show that the sky brightness due to the illuminated exosphere is <8.7 photons−1 cm−2 arcsec−2 within the wavelength range 245–340 nm. By evaluating the signal-to-noise ratios of observations of an AB = 13 mag point source at a series of sky background levels, our analysis indicates that the detection performance of LUT can be moderately degraded by the lunar exosphere emission in most cases. An AB = 13 mag point source can still be detected by the telescope at a signal-to-noise ratio more than 8 when the OH concentration is less than 2 × 108 molecules cm−3. However, the effect on the performance is considerable when the exosphere is as dense as suggested by CHACE.  相似文献   

16.
Thermospheric infrared radiance at 4.3 μm is susceptible to the influence of solar-geomagnetic disturbances. Ionization processes followed by ion-neutral chemical reactions lead to vibrationally excited NO+ (i.e., NO+(v)) and subsequent 4.3 μm emission in the ionospheric E-region. Large enhancements of nighttime 4.3 μm emission were observed by the TIMED/SABER instrument during the April 2002 and October–November 2003 solar storms. Global measurements of infrared 4.3 μm emission provide an excellent proxy to observe the nighttime E-region response to auroral dosing and to conduct a detailed study of E-region ion-neutral chemistry and energy transfer mechanisms. Furthermore, we find that photoionization processes followed by ion-neutral reactions during quiescent, daytime conditions increase the NO+ concentration enough to introduce biases in the TIMED/SABER operational processing of kinetic temperature and CO2 data, with the largest effect at summer solstice. In this paper, we discuss solar storm enhancements of 4.3 μm emission observed from SABER and assess the impact of NO+(v) 4.3 μm emission on quiescent, daytime retrievals of Tk/CO2 from the SABER instrument.  相似文献   

17.
The paper presents a conceptual configuration of the lunar base bioregenerative life support system (LBLSS), including soil-like substrate (SLS) for growing plants. SLS makes it possible to combine the processes of plant growth and the utilization of plant waste. Plants are to be grown on SLS on the basis of 20 kg of dry SLS mass or 100 kg of wet SLS mass per square meter. The substrate is to be delivered to the base ready-made as part of the plant growth subsystem. Food for the crew was provided by prestored stock 24% and by plant growing system 76%. Total dry weight of the food is 631 g per day (2800 kcal/day) for one crew member (CM). The list of candidate plants to be grown under lunar BLSS conditions included 14 species: wheat, rice, soybean, peanuts, sweet pepper, carrots, tomatoes, coriander, cole, lettuce, radish, squash, onion and garlic. From the prestored stock the crew consumed canned fish, iodinated salt, sugar, beef sauce and seafood sauce. Our calculations show that to provide one CM with plant food requires the area of 47.5 m2. The balance of substance is achieved by the removal dehydrated urine 59 g, feces 31 g, food waste 50 g, SLS 134 g, and also waters 86 g from system and introduction food 236 g, liquid potassium soap 4 g and mineral salts 120 g into system daily. To reduce system setup time the first plants could be sowed and germinated to a certain age on the Earth.  相似文献   

18.
We observed 10 active regions through their disk passage during June 25–August 25, 1988, with the Tower Vector Magnetograph (TVM) of Marshall Space Flight Center. The TVM was used in scanning mode to measure the photospheric Doppler velocities with the Line-Center-Magnetogram (LCM) technique in the spectral line of FeI 5250.2 Å. In this paper we present the result of a subset of observations obtained while the active regions were situated away from the solar limb. A wide range of magnetic complexity and associated chromospheric activity characterized these active regions. It was found that the value of zero-crossing wavelength of the integrated Stokes-V profile of two opposite magnetic polarities were different, corresponding to Doppler velocities ranging from ∼100 m s−1 to ∼1475 m s−1. The measurements of relative velocities between different locations, connected by magnetic flux tubes as inferred from YOHKOH soft X-ray and TRACE 171 Å Fe IX images, showed widely different values of dominant localized flows. The region of parasite polarity, which showed recurrent chromospheric activity, was blue shifted with respect to the main “magnetic element” of the same polarity. Some of them were also the sites of sheared magnetic field configuration. The magnitude of the relative velocity between the leading and following polarity is more for the active regions of higher “field asymmetry”.  相似文献   

19.
The main obstacle to using mineralized human solid and liquid wastes as a source of mineral elements for plants cultivated in bio-technical life support systems (BLSS) is that they contain NaCl. The purpose of this study is to determine whether mineralized human wastes can be used to prepare the nutrient solution for long-duration conveyor cultivation of uneven-aged wheat and Salicornia europaea L. plant community. Human solid and liquid wastes were mineralized by the method of “wet incineration” developed by Yu. Kudenko. They served as a basis for preparing the solutions that were used for conveyor-type cultivation of wheat community represented by 5 age groups, planted with a time interval of 14 days. Wheat was cultivated hydroponically on expanded clay particles. To reduce salt content of the nutrient solution, every two weeks, after wheat was harvested, 12 L of solution was removed from the wheat irrigation tank and used for Salicornia europaea cultivation in water culture in a conveyor mode. The Salicornia community was represented by 2 age groups, planted with a time interval of 14 days. As some portion of the nutrient solution used for wheat cultivation was regularly removed, sodium concentration in the wheat irrigation solution did not exceed 400 mg/L, and mineral elements contained in the removed portion were used for Salicornia cultivation. The experiment lasted 4 months. The total wheat biomass productivity averaged 30.1 g · m−2 · day−1, and the harvest index amounted to 36.8%. The average productivity of Salicornia edible biomass on a dry weight basis was 39.3 g · m−2 · day−1, and its aboveground mass contained at least 20% of NaCl. Thus, the proposed technology of cultivation of wheat and halophyte plant community enables using mineralized human wastes as a basis for preparing nutrient solutions and including NaCl in the mass exchange of the BLSS; moreover, humans are supplied with additional amounts of leafy vegetables.  相似文献   

20.
Densities derived from accelerometer measurements on the CHAMP satellite near 400 km are used to statistically establish characteristics of large-scale (>1000 km) traveling atmospheric disturbances (TADs). Only TADs that at least propagate from the auroral zone to the equator are analyzed here, and a total of 21 identifiable events are found over the years 2001–2007. The average speed of all TADs, regardless of local time, is 646 ± 122 ms−1. The average speeds on the dayside and nightside are 595 ± 127 ms−1 and 685 ± 106 ms−1, respectively, i.e., the speed appears to be 10% higher on average on the nightside. On six occasions TADs were only detected on the night side; however, TADs on the dayside often appear more distinctly in the data. Moreover, contrary to some theoretical expectations, dayside TADs do not dissipate more readily than night side TADs, although much less are detected between 8–20 solar local time. No clear dependence of TAD amplitude or phase speed with respect to Kp, or rate of increase of Kp, is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号