首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In this paper we compared the ionospheric peak parameters (peak electron density of the F region, NmF2, and peak height of the F region, hmF2) retrieved from the FORMASAT-3/COSMIC (COSMIC for short) satellite measurement with those from ionosonde observation at Sanya (18.3°N, 109.6°E) during the period of 2008–2013. Although COSMIC NmF2 (hmF2) tends to be lower (higher) than ionosonde NmF2 (hmF2), the results show that the ionospheric peak parameters retrieved from COSMIC measurement generally agree well with ionosonde observation. For NmF2 the correlation between the COSMIC measurement and the ionosonde observation is higher than 0.89, and for hmF2 the correlation is higher than 0.80. The correlation of the ionospheric peak parameters decreases when solar activity increases. The performance of COSMIC measurement is acceptable under geomagnetic disturbed condition. The correlation of NmF2 between COSMIC and ionosonde measurements is higher (lower) during the nighttime (daytime), while the correlation of hmF2 is lower (higher) during the nighttime (daytime).  相似文献   

2.
In this paper, we present our recent work on developing an updated global model of the ionospheric F2 peak height hmF2 parameter by combining data from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC/FORMOSAT-3) radio occultation (RO) measurements and from the extended global ionosonde stations. In particular, 10 Chinese ionosonde stations’ data are newly introduced into this study. The modeling technique used is based on a two-layer empirical orthogonal function (EOF) expansion. Global distributions of hmF2 maps calculated using the newly constructed global model and the one provided by the International Reference Ionosphere model (IRI-ITU-R) are compared with the global distributions of hmF2 obtained by the COSMIC RO measurements and quantitative statistical analysis of the differences between the model results and those of the COSMIC RO measurements is made for the low (2008) and high (2012) solar activity years. The obtained average root-mean-square differences (RMSEs) for our model are 27.7 km (11.1%) and 31.0 km (9.8%), respectively for the years 2008 and 2012, whereas those for the IRI-ITU-R model are 39.9 km (16.9%) and 35.0 km (11.6%), respectively. Comparison of the results calculated both by our model and the IRI-ITU-R model with the digisonde observation is also made. The comparisons show that the newly constructed global hmF2 model can reproduce reasonably well the observations and perform better than IRI-ITU-R model.  相似文献   

3.
With a network of ground-based ionosondes distributed around the world, the ionospheric peak electron density and its height measured by FORMOSAT-3/COSMIC satellites in terms of GPS radio occultation technique are extensively examined in this article. It is found that, in spite of the latitude, the mean values of the peak electron density measured by COSMIC satellites are systematically smaller than those observed by ground-based ionosondes. The discrepancy between them is dependent on the latitude, namely, it is small in low and mid-latitudes and large in high-latitude region. Moreover, statistical analysis shows that the slopes of the regression line that is best fitted to the scatter diagram of occultation-retrieved peak electron density (ordinate axis) versus ionosonde-observed peak density (abscissa axis) are universally less than one. This feature is believed to be the result of path average effect of non-uniform distribution of the electron density along the GSP ray during the occultation. A comparison between COSMIC-measured peak height and ionosonde-derived peak height hmF2 indicates that the former is systematically higher than the latter. The difference in the two can be as large as 20% or more in equatorial and low-latitude regions. This result implies that the peak height hmF2 derived from the virtual height through true height analysis based on Titheridge method seems to underestimate the true peak height. The correlation between COSMIC and ionosonde peak electron densities is analyzed and the result reveals that correlation coefficient seems to be dependent on the fluctuation of the occultation-retrieved electron density profile. The correlation will be higher (lower) for the electron density profiles with smaller (larger) fluctuations. This feature suggests that the inhomogeneous distribution of the electron density along the GPS ray path during the occultation plays an important role affecting the correlation between COSMIC and ionosonde measurements.  相似文献   

4.
在小型天线和低发射功率条件下,保证电离层测高仪观测数据质量和提高观测速度一直是电离层垂测的技术难点.针对这一问题,基于新近发展的高速数字芯片和射频器件,采用窄带跟踪滤波、脉冲压缩、编码复用和天线均衡匹配等技术,设计和研制一种敏捷数字电离层测高仪.该系统采用数米高的小型收发天线和便携式主机系统,配置任意频率扫描方式频高图、高分辨率多普勒频高图和斜向探测等多种工作模式,具有可流动观测布站、系统参数灵活捷变及适合快速电离层扰动探测等能力.敏捷数字电离层测高仪为组网观测获得大范围电离层时空变化和电离层快速扰动及传播提供了一种有效的探测手段.   相似文献   

5.
CAS-DIS数字电离层测高仪系统研制   总被引:3,自引:2,他引:1  
提出了将射频直接采样数字化的接收方式应用于数字电离层测高仪系统的设计方案, 并详细介绍了该方案在CAS-DIS (Chinese Academy of Sciences, Digital Ionosonde)电离层测高仪系统的应用, 给出了CAS-DIS电离层测高仪在中国武汉电离层探测标校试验场和武汉-北京斜向电离层探测系统中的实验结果. 观测结果表明, 采用本文提出的数字化方案设计的电离层测高仪系统性能优越, 且可以分别工作在垂直和斜向探测模式, 满足了电离层探测的多种应用需求.   相似文献   

6.
The main objective of the present investigation has been to compare the ionospheric parameters (NmF2 and hmF2) observed by two ground-based ionospheric sounders (one at PALMAS- located near the magnetic equator and the other at Sao Jose dos Campos-located in the low-latitude region) in the Brazilian sector with that by the satellite FORMOSAT-3/COSMIC radio occultation (RO) measurements during two geomagnetic storms which occurred in December 2006 and July 2009. It should be pointed out that in spite of increasing the latitude (to 10°) and longitude (to 20°) around the stations; we had very few common observations. It has been observed that both the peak electron density (NmF2) and peak height (hmF2) observed by two different techniques (space-borne COSMIC and ground-based ionosondes) during both the geomagnetic storm events compares fairly well (with high correlation coefficients) at the two stations in the Brazilian sector. It should be pointed out that due to equatorial spread F (ESF) in the first storm (December 2006) and no-reflections from the ionosphere during nighttime in the second storm (July 2009), we had virtually daytime data from the two ionosondes.  相似文献   

7.
Global Navigation Satellite System’s (GNSS) positioning calculation is prone to ionospheric errors. Single frequency GNSS users receive ionospheric corrections through broadcast ionospheric models. Therefore, the accuracy of ionospheric models must be validated based on various geographic and geomagnetic conditions. In this work, an attempt is made to validate NeQuick2 electron density (Ne) using multiple sources of space-based and ground-based data at the Arabian Peninsula and for low solar activity conditions. These sources include space-based data from Swarm, DMSP and COSMIC-2 satellite constellations and ground-based data from GNSS receiver and the ionosonde. The period of this study is 1 year from October 2019 to September 2020. Analysis shows that the agreement between NeQuick2 and experimental Ne close to the peak density height depends on seasons and time of the day with the largest errors found in Autumn and during the daytime. NeQuick2 generally overestimates Ne during the daytime. During the early morning and evening hours, Ne estimates seem to be fairly accurate with slight underestimation in Winter and Spring. Estimation of slab thickness by NeQuick2 is found to be close to the values calculated using collocated ionosonde and GNSS receiver.  相似文献   

8.
The St. Patrick’s Day storm being the strongest geomagnetic storm of Solar Cycle 24 caused strong changes in ionospheric and thermospheric dynamics. The paper presents a study of vertical plasma transport in the ionosphere during the St. Patrick’s Day storm with using both observations and modeling. The observations give the ionospheric peak height obtained with the chirp vertical sounding ionosonde and the neutral wind velocities obtained with the Fabry-Perot interferometer. The ionospheric peak height is an indicator of the total vertical plasma transport, while meridional wind and electromagnetic drift are the two main drivers of the vertical plasma transport. The Global Self-consistent Model of the Thermosphere, Ionosphere, and Protonosphere used in this study gives the total set of ionospheric and thermospheric parameters including F2-layer peak height, neutral wind velocities, electric field, and neutral composition. The model/data comparison allows us to obtain two main results. The first one is an estimation of the model prediction possibilities under storm conditions. The second result is an indirect assessment of the neutral wind and electric field contribution into the changes in the ionospheric peak height in the case of the St. Patrick’s Day geomagnetic storm.  相似文献   

9.
The Constellation Observing System for Meteorology Ionosphere and Climate (COSMIC) is a six satellite radio occultation mission that was launched in April 2006. The close proximity of these satellites during some months after launch provides a unique opportunity to evaluate the precision of Global Positioning System (GPS) radio occultation (RO) retrievals of ionospheric electron density from nearly collocated and simultaneous observations. RO data from 30 consecutive days during July and August 2006 are divided into ten groups in terms of daytime or nighttime and latitude. In all cases, the best precision values (about 1%) are found at the F peak height and they slightly degrade upwards. For all daytime groups, it is seen that electron density profiles above about 120 km height exhibit a substantial improvement in precision. Nighttime groups are rather diverse: in particular, the precision becomes better than 10% above different levels between 120 and 200 km height. Our overall results show that up to 100–200 km (depending on each group), the uncertainty associated with the precision is in the order of the measured electron density values. Even worse, the retrieved values tend sometimes to be negative. Although we cannot rely directly on electron density values at these altitudes, the shape of the profiles could be indicative of some ionospheric features (e.g. waves and sporadic E layers). Above 200 km, the profiles of precision are qualitatively quite independent from daytime or latitude. From all the nearly collocated pairs studied, only 49 exhibited a difference between line of sight angles of both RO at the F peak height larger than 10°. After analyzing them we find no clear indications of a significant representativeness error in electron density profiles due to the spherical assumption above 120 km height. Differences in precision between setting and rising GPS RO may be attributed to the modification of the processing algorithms applied to rising cases during the initial period of the COSMIC mission.  相似文献   

10.
In the present work values of peak electron density (NmF2) and height of F2 ionospheric layer (hmF2) over Tehran region at a low solar activity period are compared with the predictions of the International Reference Ionosphere models (IRI-2001 and IRI-2007). Data measured by a digital ionosonde at the ionospheric station of the Institute of Geophysics, University of Tehran from July 2006 to June 2007 are used to perform the calculations. Formulations proposed by  and  are utilized to calculate the hmF2. The International Union of Radio Science (URSI) and International Radio Consultative Committee (CCIR) options are employed to run the IRI-2001 and IRI-2007 models. Results show that both IRI-2007 and IRI-2001 can successfully predict the NmF2 and hmF2 over Tehran region. In addition, the study shows that predictions of IRI-2007 model with CCIR coefficient has closer values to the observations. Furthermore, it is found that the monthly average of the percentage deviation between the IRI models predictions and the values of hmF2 and NmF2 parameters are less than 10% and 21%, respectively.  相似文献   

11.
12.
为了提高电离层虚高测量精度,介绍了利用电离层回波相位实现高精度虚高测量的方法,并以CADI(Canadian Advanced Digital Ionosonde)电离层数字测高仪为研究平台,进行组合脉冲控制和回波相位测量分析,开展了一系列虚高测量实验,并与传统的利用回波时间延迟的虚高测量方法进行了分析比较.实验结果表明,基于回波相位的测量分析方法与回波时延测量分析方法相比,其虚高测量精度高一个量级以上,这对精确反演电离层峰下电子浓度剖面及研究电离层精细结构具有重要意义.   相似文献   

13.
Analysis of the seasonal, hemispheric and latitudinal variation of the ionospheric F2 peak during periods of disturbed geomagnetic conditions in 2011, a year of low solar activity, had been studied using hourly data obtained from low- and mid-latitude ionosonde stations. Our results showed an enhancement in F2-layer maximum electron density (NmF2) at daytime over low latitudes. For the mid-latitude stations, NmF2 depletion pre-dominates the daytime and overturned at nighttime. In general, the variation in terms of magnitude is higher in the low-latitude than at mid-latitude. The nighttime decrease in NmF2 is accompanied by a corresponding F2 peak height (hmF2) increase and overturned at daytime. The hmF2 response during the equinoctial months is lower than the solstices. NmF2 shows distinct seasonal, hemispheric and latitudinal dependence in its response. Appearance of a significant ionospheric effect in southern hemisphere is higher than in the northern hemisphere, and is more pronounced in the equinoxes at low latitudes. At mid-latitudes, the ionospheric effect is insignificant at both hemispheres. A negative ionospheric response dominates the whole seasons at the mid-latitude except for March equinox. The reverse is the case for the hmF2 observation. The amplitudes of both the NmF2 and hmF2 increase with increasing latitude and maximize in the southern hemisphere in terms of longitude.  相似文献   

14.
The ionospheric sounding observations using the Canadian Advanced Digital Ionosondes (CADIs) operational at Palmas (PAL; 10.2°S, 48.2°W; dip latitude 6.6°S; a near-equatorial station), and São José dos Campos (SJC, 23.2°S, 45.9°W; dip latitude 17.6°S; a low-latitude station located under the southern crest of the equatorial ionospheric anomaly), Brazil, are analyzed during the different seasons viz., winter (June and July 2003), spring (September and October 2003), summer (December 2003 and January 2004), and fall (March and April 2004). The period used has medium solar activity (sunspot number between 77.4 and 39.3). The seasonal mean variations (using only geomagnetically quiet days) of the ionospheric parameters foF2 (critical frequency of the F-region), hpF2 (virtual height at 0.834 foF2; considered to be close to hmF2 (peak height of the F-region)), and h’F (minimum virtual height of the F-region) are calculated and compared between PAL and SJC. The prominent differences between PAL and SJC are as follows: h’F variations show strong post-sunset enhancement at PAL during the seasons of spring, summer, and fall; hpF2 variations show pre-sunrise uplifting of the F-layer at both stations during all the seasons and the hpF2 values during the daytime are lower at SJC compared with PAL during all the seasons; the foF2 variations show mid-day bite-out at PAL during all the seasons and SJC shows strong equatorial ionospheric anomaly during summer and fall seasons. Also, the seasonal variations of the ionospheric parameters foF2 and hpF2 (with ±1 standard deviation) observed at PAL and SJC are compared with the IRI-2007 model results of foF2 and hmF2. In addition, variations of the foF2 and hpF2 observed at SJC are compared with the IRI-2001 model results of foF2 and hmF2. It should be pointed out that the ionospheric parameter hpF2 is much easier to obtain using computer program developed at UNIVAP compared with hmF2 (using POLAN program). During the daytime due to underlying ionization hpF2 estimated is higher (approximately 50 km) than the true peak height hmF2. During the nighttime hpF2 is fairly close to hmF2. The comparison between the foF2 variations observed at PAL and SJC with the IRI-2007 model results shows a fairly good agreement during all the seasons. However, the comparison between the hpF2 variations observed at PAL and SJC with the hmF2 variations with the IRI-2007 model results shows: (1) a fairly good agreement during the nighttime in all the seasons; (2) the model results do not show the pre-sunrise uplifting of the F-layer at PAL and SJC in any season; (3) the model results do not show the post-sunset uplifting of the F-layer at PAL; (4) considering that, in general, hpF2 is higher than hmF2 during the daytime by about 50 km, the model results are in good agreement at PAL and SJC during all the seasons except summer at SJC, when large discrepancies in the observed hpF2 and modeled hmF2 are observed. Also, it has been observed that, in general, hmF2 values for SJC calculated using IRI-2001 are higher than IRI-2007 during the daytime in winter, summer, and fall. However, hmF2 values for SJC calculated using IRI-2001, are lower than IRI-2007 during the nighttime in spring.  相似文献   

15.
We examined performance of two empirical profile-based ionospheric models, namely IRI-2016 and NeQuick-2, in electron content (EC) and total electron content (TEC) representation for different seasons and levels of solar activity. We derived and analyzed EC estimates in several representative altitudinal intervals for the ionosphere and the plasmasphere from the COSMIC GPS radio occultation, ground-based GPS and Jason-2 joint altimeter/GPS observations. It allows us to estimate a quantitative impact of the ionospheric electron density profiles formulation in several altitudinal intervals and to examine the source of the model-data discrepancies of the EC specification from the bottom-side ionosphere towards the GPS orbit altitudes. The most pronounced model-data differences were found at the low latitude region as related to the equatorial ionization anomaly appearance. Both the IRI-2016 and NeQuick-2 models tend to overestimate the daytime ionospheric EC and TEC at low latitudes during all seasons of low solar activity. On the contrary, during high solar activity the model results underestimated the EC/TEC observations at low latitudes. We found that both models underestimated the EC for the topside ionosphere and plasmasphere regions for all levels of solar activity. For low solar activity, the underestimated EC from the topside ionosphere and plasmasphere can compensate the overestimation of the ionospheric EC and, consequently, can slightly decrease the resulted model overestimation of the ground-based TEC. For high solar activity, the underestimated EC from the topside ionosphere and plasmasphere leads to a strengthening of the model underestimation of the ground-based TEC values. We demonstrated that the major source of the model-data discrepancies in the EC/TEC domain comes from the topside ionosphere/plasmasphere system.  相似文献   

16.
This study presents the response of thermospheric O1D 630.0 nm dayglow emission to the variability associated with equatorial Counter Electrojet (CEJ) events. The analysis based on the data from a meridian scanning Dayglow Photometer, Digital Ionosonde and Proton Precession Magnetometer over Trivandrum (8.5°N, 77°E, 0.5°dip lat.), indicates that the O1D 630.0 nm emission behave distinctly different during the CEJ events compared to that on normal days. It has been observed that O1D 630.0 nm emission shows enhancement during the negative excursion of the ΔH, followed by an unusual depletion during the peak CEJ time. The observed variability was found to be more pronounced in a latitudinal region of ±3° centered at around the dip equator. In addition, the emission intensities also exhibit the presence of enhanced short period oscillations of periodicity 20–30 min during the CEJ events. Analysis of the data from the collocated ionosonde revealed that the F-region electron density showed enhancement during the early phase of the CEJ and a decrease during the peak CEJ. Further, the simulation studies using a Quasi 2 dimensional ionospheric model showed that the modified plasma fountain during the CEJ can alter the plasma density at the emission centroid. The study reveals a strong dynamical coupling between the E and F-region of the dip equatorial ionosphere.  相似文献   

17.
电离层峰值高度HmF2是描述电离层形态的重要参数之一,国际参考电离层模型IRI-2016中融入了大量电离层测高仪和无线电掩星探测数据,用以提升HmF2的预测精度.本文利用太阳活动低年(2007—2010年)气象、电离层和气候卫星联合观测系统COSMIC探测数据描述全球范围内COSMIC HmF2的三维形态变化,对比分析了IRI-2016与IRI-2012模型的预测结果,同时分析了IRI-2016模型输出HmF2的性能.结果表明,IRI模型在中高纬度地区的输出结果高于COSMIC反演结果,而赤道及低纬地区则大都偏低.与IRI-2012模型相比,IRI-2016模型的输出结果在夜间至凌晨时段呈现较为明显的纬向梯度变化且大部分区域输出值偏高,但在白天时段赤道附近区域的输出值大都偏低.上述结果为电离层IRI模型的完善提供了一定参考.   相似文献   

18.
In this paper we present the results of the comparison of the retrieved electron density profiles of the Ionospheric Radio Occultation (IRO) experiment on board CHAMP (CHAllenging Minisatellite Payload), with the ground ionosonde profiles for the Polar Regions. IRO retrieved electron density profiles from CHAMP are compared with Canadian Advanced Digital Ionosonde (CADI) measurements at two vertical sounding stations well within the Polar Cap, Eureka (geog. 80°13′ N; 86°11′ W) and Resolute Bay (geog. 74°41′ N; 94°54′ W). We compared the ionospheric parameters such as the peak electron density of the F-layer (NmF2) and the peak height of the F-layer (hmF2) for a 3-year period, 2004–2006. CHAMP derived NmF2 shows reasonable agreement with the ionosonde retrieved NmF2 for both the stations (0.76 and 0.71 correlation coefficient, for Eureka and Resolute Bay, respectively) whereas the hmF2 agreement is not that acceptable (0.25 and 0.37 correlation coefficient, respectively). The hmF2 from vertical sounding showed less spread than the CHAMP hmF2.  相似文献   

19.
TIEGCM集合卡尔曼滤波同化模型设计及初步试验   总被引:1,自引:0,他引:1       下载免费PDF全文
选择参数化的电离层热层理论模型TIEGCM作为背景模型,基于COSMIC掩星观测的电子密度廓线数据,应用集合卡尔曼滤波方法建立全球电离层电子密度同化模型,实现了全球电离层的电子密度同化.同化结果表明,该同化模型能将观测资料有效同化到背景模式中,获得全球三维电离层电子密度.与背景模式相比,同化得到的电子密度相对于观测值的偏差显著下降.对于有同化和无同化参与的试验,NmF2的标准偏差分别降低约60%和20%.此外,分组同化与同时同化的结果对比显示,平均偏差改善基本一致,同时同化后的标准偏差在峰值高度以上略有减小.   相似文献   

20.
The present work is an attempt to evaluate the impact of changing space weather condition over sub-auroral ionosphere during high solar activity year 2014. In view of this, the GPS based TEC along with Ionosonde data over Indian permanent scientific base “Maitri”, Antarctica (70°46′00″S, 11°43′56″E) has been utilized. The results suggested that the nature of ionospheric responses to the geomagnetic disturbances not only depended upon the status of high latitudinal electro-dynamic processes but also influenced by the seasonal variations. The results revel both negative and positive type of ionospheric response in a single year but during different seasons. The study suggested that the combination of equator-ward plasma transportation along with ionospheric compositional changes causes a negative ionospheric impact especially during summer and equinox seasons. However, the combination of pole-ward contraction of the oval region along with particle precipitation may lead to exhibit positive ionospheric response during the winter season. The plasma transportation direction has been validated with the help of convection boundary (HM boundary) deduced with the help of SuperDARN observations. The ground based ionosonde observations clearly provided the evidence of deep penetration of high energetic particles up to the E-layer heights which results a sudden and strong appearance of E-layer. The strengthening of E-layer is responsible for modification of auroral electrojet and field-aligned current system. Also, the sudden appearance of E-layer along with a decrease in F-layer electron density suggested the dominance of NO+ over O+ in a considered region under geomagnetic disturbed condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号