首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
To understand global variability and triggering mechanisms of ionospheric nighttime equatorial spread F (ESF), we analyzed measurements from satellite and a ground-based GPS station for the years between 2010 and 2017. In this study we present seasonal-longitudinal as well as monthly variability of ESF occurrence for solar minimum and yearly variations of ESF occurrence for solar maximum and minimum periods. One of the long standing open questions in the study of ESF is what exactly initiates the Rayleigh-Taylor (RT) plasma instability growth. This question is the focus of the present work. Zonal background eastward electric field and E × B upward plasma drift speed patterns are found to be critically important in understanding plasma irregularity formation. In addition to particular patterns observed on these parameters, the background plasma density in the local evening hours just before the onset of ESF occurrence is very important. Stronger plasma densities just before the onset of irregularities resulted in stronger plasma irregularities, while relatively less dense plasma just before the onset of irregularities resulted in relatively lower plasma irregularities. Seasonal variations in ESF activity between March and September equinox seasons with comparable plasma densities can be defined in terms of the rate of change of solar flux F10.7 (dF10.7/day) index. Strongest ESF occurrence and strongest dF10.7/day are measured in the same month out of all other months in 2016 and 2017. Longitudinal variations of ESF activity in our measurements are related to longitudinal variations of plasma densities. We also found that ESF occurrence is better correlated with rate of change of F10.7 index for months in equinox seasons than for months in solstice seasons for the years between 2013 and 2016.  相似文献   

2.
The characteristics of the equatorial F-region zonal plasma drift during post-sunset period have been investigated using the multi-frequency HF Doppler radar. The pattern of the zonal plasma drift is such that it starts with a westward drift during the pre-sunset hours, followed by an eastward drift shortly after the E-region sunset. The zonal plasma drift is characterized by the presence of a positive vertical shear around the post-sunset period and maximum shear is observed at the time of the peak of the pre-reversal enhancement in the vertical drift. The presence of vertical shear in the zonal drift is associated with the post-sunset velocity vortex existing at the equatorial F-region.  相似文献   

3.
A comprehensive analysis using nearly two decades of ionosonde data is carried out on the seasonal and solar cycle variations of Equatorial Spread F (ESF) irregularities over magnetic equatorial location Trivandrum (8.5°N, 77°E). The corresponding Rayleigh Taylor (RT) instability growth rates (γ) are also estimated. A seasonal pattern of ESF occurrence and the corresponding γ is established for low solar (LSA), medium solar (MSA) and high solar (HSA) activity periods. For LSA, it is seen that the γ maximizes during post sunset time with comparable magnitudes for autumnal equinox (AE), vernal equinox (VE) and winter solstice (WS), while for summer solstice (SS) it maximizes in the post-midnight period. Concurrent responses are seen in the ESF occurrence pattern. For MSA, γ maximizes during post-sunset for VE followed by WS and AE while SS maximises during post-midnight period. The ESF occurrence for MSA is highest for VE (80%), followed by AE (70%), WS (60%) and SS (50%). In case of HSA, maximum γ occurs for VE followed by AE, WS and SS. The concurrent ESF occurrence maximizes for VE and AE (90%), WS and SS at 70%.The solar cycle variation of γ is examined. γ shows a linear variation with F10.7?cm flux. Further, ESF percentage occurrence and duration show an exponential and linear variation respectively with γ. An empirical model on the solar activity dependence of ESF occurrence and sustenance time over Indian longitudes is arrived at using the database spanning two solar cycles for the first time.  相似文献   

4.
The behaviour of the equatorial/low-latitude ionosphere and the transport processes during magnetic disturbed and quiet periods of a high solar activity year, 2014, in the American sector are investigated. Parameters used include vertical drift (Vz), transport term (W), NmF2, hmF2 and scale-height (H). The F2 plasma variations followed the diurnal local solar pattern, being higher at daytime. The sunset maximum and sunrise minimum peaks of hmF2 were directly opposite to the scale height (H) pattern. The plasma distribution was basically controlled by combined actions of the electrodynamic convection/thermospheric composition, which is geomagnetic activity dependent. The annual, semi-annual and winter-anomalies of the F2 parameters were higher at the dip equator in comparison with the low-latitude. The Vz pre-reversal peak magnitude coincided with hmF2 peak and the effects are more pronounced during geomagnetic disturbed conditions. The transport term pattern was similar to that of the scale height and it is suggested as a proxy parameter for quantifying low-latitude plasma irregularities and distribution of thermospheric composition.  相似文献   

5.
In this study we have used VHF and GPS-SCINDA receivers located at Nairobi (36.8°E, 1.3°S, dip −24.1°) in Kenya, to investigate the ionospheric scintillation and zonal drift irregularities of a few hundred meter-scale irregularities associated with equatorial plasma density bubbles for the period 2011. From simultaneous observations of amplitude scintillation at VHF and L-band frequencies, it is evident that the scintillation activity is higher during the post sunset hours of the equinoctial months than at the solstice. While it is noted that there is practically no signatures of the L-band scintillation in solstice months (June, July, December, January) and after midnight, VHF scintillation does occur in the solstice months and show post midnight activity through all the seasons. VHF scintillation is characterized by long duration of activity and slow fading that lasts till early morning hours (05:00 LT). Equinoctial asymmetry in scintillation occurs with higher occurrence in March–April than in September–October. The occurrence of post midnight VHF scintillation in this region is unusual and suggests some mechanisms for the formation of scintillation structure that might not be clearly understood. Zonal drift velocities of irregularities were measured using cross-correlation analysis with time series of the VHF scintillation structure from two closely spaced antennas. Statistical analyses of the distribution of zonal drift velocities after sunset hours indicate that the range of the velocities is 30–160 m/s. This is the first analysis of the zonal plasma drift velocity over this region. Based on these results we suggest that the east–west component of the plasma drift velocity may be related to the evolution of plasma bubble irregularities caused by the prereversal enhancement of the eastward electric fields. The equinoctial asymmetry of the drift velocities and scintillation could be attributed to the asymmetry of neutral winds in the thermosphere that drives the eastward electric fields.  相似文献   

6.
The equatorial ionosphere and thermosphere constitute a coupled system, with its electro dynamical and plasma physical processes being responsible for a variety of ionospheric phenomena peculiar to the equatorial region. The most important of these phenomena are: the equatorial electrojet (EEJ) current system and its instabilities, the equatorial ionization anomaly (EIA), and the plasma instabilities/irregularities of the night ionosphere (associated with the plasma bubble events – ESF). They constitute the major topics of investigations having both scientific and practical objectives. The tidal wind interaction with the geomagnetic field is responsible for the atmospheric dynamo electric fields, that together with the wind system, drives the major phenomena, under quiet conditions. Drastic modifications of these phenomena can occur due to magnetospheric forcing under solar-, interplanetary- and magnetospheric disturbances. They can also undergo significant modifications due to forcing by atmospheric waves (such as planetary- and atmospheric gravity waves) propagating upward or from extra tropics. This article will focus on the ambient conditions of the ionosphere–thermosphere system and the electro dynamics and plasma instability processes that govern the plasma irregularity generation. Major emphasis is given to problems related to the structuring of the equatorial night ionosphere through plasma bubble/ESF irregularity processes. Specific topics to be covered will include: equatorial electric fields, thermospheric winds, sunset electrodynamic processes, plasma drifts, EEJ plasma instability/irregularity generation, nighttime/post sunset plasma bubble irregularity generation, and very briefly, disturbance electric fields and winds and their effect on the ionization anomaly, the TEC and ESF/plasma bubble irregularities.  相似文献   

7.
Complex electrodynamic processes over the low latitude region often result in post sunset plasma density irregularities which degrade satellite communication and navigation. In order to forecast the density irregularities, their occurrence time, duration and location need to be quantified. Data from the Communication/Navigation Outage Forecasting System (C/NOFS) satellite was used to characterize the low latitude ion density irregularities from 2011 to 2013. This was supported by ground based data from the SCIntillation Network Decision Aid (SCINDA) receivers at Makerere (Geographic coordinate 32.6°E, 0.3°N, and dip latitude ?9.3°N) and Nairobi (Geographic coordinate 36.8°E, ?1.3°N, and dip latitude ?10.8°N). The results show that irregularities in ion density have a daily pattern with peaks from 20:00 to 24:00 Local Time (LT). Scintillation activity at L band and VHF over East Africa peaked in 2011 and 2012 from 20:00 to 24:00 LT, though in many cases scintillation at VHF persisted longer than that at L band. A longitudinal pattern in ion density irregularity occurrence was observed with peaks over 135–180°E and 270–300°E. The likelihood of ion density irregularity occurrence decreased with increasing altitude. Analysis of C/NOFS zonal ion drift velocities showed that the largest nighttime and daytime drifts were in 270–300°E and 300–330°E longitude regions respectively. Zonal irregularity drift velocities over East Africa were for the first time estimated from L-band scintillation indices. The results show that the velocity of plasma density irregularities in 2011 and 2012 varied daily, and hourly in the range of 50–150 m s?1. The zonal drift velocity estimates from the L-band scintillation indices had good positive correlation with the zonal drift velocities derived from VHF receivers by the spaced receiver technique.  相似文献   

8.
The contribution of gravity wave (GW) to the initiation/development of spread F during a solar minimum year was investigated through the comparison of the observed precursory parameters and characteristics of the corresponding equatorial spread F (ESF) events. The ionospheric parameters were recorded at the magnetic equatorial station Sao Luis (2.3°S, 44°W, dip latitude 2°S) during March and October 2010. These data were used to estimate the influence of the relative gravity wave amplitude and the ambient ionospheric condition on the diurnal variation of the spread F initiation. The vertical velocity drift indicated a clear control and defines the threshold for the seasonal variability of the ESF occurrence. However, it was insufficient to solely determine or predict the day to day variation of ESF occurrence. Thus, few days with contrasting ambient ionospheric condition and magnitude of GW amplitude were analysed in order to investigate the role of the different precursory factors in the observed diurnal variation of the plasma irregularity development. The density scale length and gravity wave amplitude were shown to immensely contribute to the linear instability growth rate, especially during the days with a low post-sunset rise. Thus, the experimental observations have demonstrated the strong inter-dependence between the precursory factors and they have also highlighted the probable control of the ESF morphology.  相似文献   

9.
Post-sunset and pre-sunrise vertical plasma drifts at the equatorial F-region have been investigated using the HF Doppler radar and ionosonde observations. Observed vertical plasma drift features during the sunrise are found to complement that observed during the evening. The post-sunset vertical plasma drift is characterized by an upward enhancement, a pre-reversal enhancement and a reversal in the drift direction. Similarly, the pre-sunrise plasma drift is characterized by a sudden downward excursion followed by an upward turning. The wavelet analysis of the plasma drift shows the presence of fluctuations in the period range 4–32 min and the short period fluctuations are attributed to the atmospheric gravity waves.  相似文献   

10.
海南地区电离层不规则体纬向漂移速度的观测和研究   总被引:3,自引:2,他引:1  
根据中国海南富克(19.3°N,109.1°E)三点GPS观测系统2007年3月至11月的观测数据,利用互相关方法分析了三站闪烁信号的时间延迟,得出了不规则体纬向漂移的基本特征.在中国海南地区,闪烁主要发生在春秋季节,夜间不规则体的纬向漂移速度以东向为主,大小在50~150 m/s之间;平均东向漂移速度随时间呈下降趋势.另外,在闪烁刚发生时,不规则体纬向速度起伏较大,这可能与不规则体的随机起伏以及等离子体泡产生时垂直速度较大有关.中国海南地区不规则体纬向漂移速度的这些基本特征与低纬其他地区的测量结果较为一致.  相似文献   

11.
The problem of day-to-day variability in onset of equatorial spread F (ESF) is addressed using data from the 2002 COPEX observational campaign in Brazil and numerical modeling. The observational results show that for values of virtual height of the F layer base less than 355 km at around 18:35 LT, and for the prereversal peak enhancement of the vertical plasma drift (Vp) less than 30 m/s, the spread-F (ESF) was absent on four nights over Cachimbo (9.5°S, 54.8°W, dip latitude = −2.1°). In this work we analyze the geophysical conditions for the generation of the irregularities by comparing the nights with and without the ESF. In the comparison a numerical code is used to simulate plasma irregularity development in an extended altitude range from the bottom of the equatorial F   layer. The code uses the flux corrected transport method with Boris–Book’s flux limiter for the spatial integration and a predictor–corrector method for the direct time integration of the continuity equation for O+O+ and the SOR (Successive-Over-Relaxation) method for electric potential equation. The code is tested with different evening eastward electric fields (or vertical drifts Vp < 30 m/s and Vp > 30 m/s) in order to study the influence of the prereversal enhancement in the zonal electric field on plasma bubble formation and development. The code also takes into account the zonal wind, the vertical electric field and the collision frequency of ions with neutrals and the amplitude of initial perturbation. The simulation shows a good agreement with the observational results of the ESF. The results of the code suggest that the instability can grow at the F layer bottomside by the Rayleigh–Taylor mechanism only when the Vp > 30 m/s. In the analyzed cases we have considered the competition of other geophysical parameters in the generation of plasma structures.  相似文献   

12.
Longitudinal distributions of post-midnight equatorial ionospheric irregularity occurrences observed by ROCSAT-1 (1st satellite of the Republic of China) during moderate to high solar activity years in two solstices are studied with respect to the vertical drift velocity and density variations. The post-midnight irregularity distributions are found to be similar to the well-documented pre-midnight ones, but are different from some published distributions taken during solar minimum years. Even though the post-midnight ionosphere is sinking in general, longitudes of frequent positive vertical drift and high density seems to coincide with the longitudes of high irregularity occurrences. Large scatters found in the vertical drift velocity and density around the dip equator in different ROCSAT-1 orbits indicate the existence of large and frequent variations in the vertical drift velocity and density that seem to be able to provide sufficient perturbations for the Rayleigh-Taylor (RT) instability to cause the irregularity occurrences. The need of seeding agents such as gravity waves from atmospheric convective clouds to initiate the Rayleigh-Taylor instability may not be necessary.  相似文献   

13.
We investigated the spatio-temporal evolution of disturbed time post mid-night Equatorial Plasma Bubbles (EPBs) using Canadian Advanced Digital Ionosonde (CADI) located at dip equatorial station, Tirunelveli (8.73°N, 77.7°E, 0.23°N Dip. Lat.), an all-sky imager (ASI) observations at low latitude station Panhala (16.48°N, 74.6°E, 11.1°N Dip. Lat.) and Gadanki Ionospheric Radar Interferometer (GIRI) at Gadanki (13.5°N, 79.2°E; 6.5°N Dip. Lat.) which is situated at few degrees towards east and south of Panhala on 02–03 February 2017 night. During this night, IMF Bz showed its periodic variation starting from 16:00 UT to 23:00 UT accompanied by decrease in SYM-H to as low as ?35 nT indicating the onset of weak magnetic storm. The analyzed results suggested that cause of post-midnight EPBs could be due to manifestation of fluctuating eastward/westward electric field due to combined under-shielding/over-shielding Electric Fields and disturbance dynamo electric fields that led to rise and fall of the F-layer over dip equator. Interestingly, the EPBs over Panhala showed eastward motion initially that quickly reversed to westward later. Along with westward motion they also started growing until 21:30 UT. However, most of these EPBs disappeared with time except the one that started descending/shrinking towards southern side (i.e. towards equator). The rising and shrinking of EPBs is found to be fairly correlated with the equatorial vertical drifts. The westward drift of EPBs at Panhala and its anti-correlation with vertical drifts has been confirmed from CADI zonal/vertical drifts. Accordingly, the study also investigated the role of storm induced vertical Hall electric field as a possible cause for westward drifts and its anti-correlation with vertical drifts. However, GIRI observations do not show any significant westward drift on this night at Gadanki suggesting that there is a longitudinal gradient in the zonal drift of these EPBs. In addition to longitudinal drift reversal, the latitudinal gradient in zonal drifts also has been noticed. The present work highlights the role of storm induced disturbances in the generation and evolution of post-midnight EPBs which is believed to be triggered by weak magnetic disturbances in the deep low solar minimum.  相似文献   

14.
The variability of the F2-layer even during magnetically quiet times are fairly complex owing to the effects of plasma transport. The vertical E × B drift velocities (estimated from simplified electron density continuity equation) were used to investigate the seasonal effects of the vertical ion drifts on the bottomside daytime ionospheric parameters over an equatorial latitude in West Africa, Ibadan, Nigeria (Geographic: 7.4°N, 3.9°E, dip angle: 6°S) using 1 year of ionsonde data during International Geophysical Year (IGY) of 1958, that correspond to a period of high solar activity for quiet conditions. The variation patterns between the changes of the vertical ion drifts and the ionospheric F2-layer parameters, especially; foF2 and hmF2 are seen remarkable. On the other hand, we observed strong anti-correlation between vertical drift velocities and h′F in all the seasons. We found no clear trend between NmF2 and hmF2 variations. The yearly average value of upward daytime drift at 300 km altitude was a little less than the generally reported magnitude of 20 ms−1 for equatorial F-region in published literature, and the largest upward velocity was roughly 32 ms−1. Our results indicate that vertical plasma drifts; ionospheric F2-layer peak height, and the critical frequency of F2-layer appear to be somewhat interconnected.  相似文献   

15.
16.
电离层峰区的等离子体漂移   总被引:2,自引:1,他引:1  
根据垂测数据、利用伺服模式讨论了中低纬上空电离层峰区等离子体垂直漂移速度的日变化形态及其随不同季节和不同纬度等的变化规律。揭示了漂移速度的凌晨凹陷与日出凸起现象,指出了可能的形成机制。  相似文献   

17.
The equatorial spread-F (ESF) is a phenomenon of ionopheric irregularities which are mainly generated by the generalized Rayleigh–Taylor (R–T) instability mechanism in conjunction with the other physical mechanisms, originated at the bottom side of the F-layer in the equatorial region after sunset. It degrades the quality of signals that propagate through these irregularities, especially in the navigation satellite system, which requires the high integrity signals. In this work, we analyze the ESF statistics obtained from the FM/CW ionosonde stations over Thailand longitude sector. One is at Chumphon (10.72°N, 99.37°E, dip latitude 3.0°), located near the geomagnetic equator, and the other station is located at Chiangmai (18.76°N, 98.93°E, dip latitude 12.7°). Both stations are as part of the South-East Asia Low Latitude Ionospheric Network (SEALION) project. The ionograms are obtained at every 15 min from September 2004 to August 2005, which has the monthly mean of solar 10.7 cm flux (F10.7) from ∼80 to ∼110. In addition, we compare the diurnal patterns between the ESF occurrences and the variation of virtual height of the F-layer bottom side (h’F) of these two stations. The results show that the ESF occurrences at Chumphon stations are higher than Chiangmai station in all seasons. The high ESF occurrences of both stations mostly occur in equinoctial months corresponded with the rapid rising of the monthly mean h’F in the post-sunset. However, some inconsistent results are still observed, implying the role of other factors such as gravity waves and planetary waves to ESF occurrences.  相似文献   

18.
19.
This paper presents a mathematical model to simulate ionospheric plasma drifts at equatorial low latitude regions by coupling of E- and F-regions. The governing non-linear differential equations (of elliptic and parabolic nature) are solved numerically through finite-difference schemes and obtained neutral winds and electric fields. The temperature and electron density profiles are generated utilizing MSIS-86 atmospheric model. The continuity equation is employed to obtain night-time E-region density profile using measured ionograms at Trivandrum (India). The computed vertical and zonal plasma drifts are comparable with measured Jacamarca plasma drifts with little variations during noon and evening times. The plasma drifts at Trivandrum (8.5° N, 76.5° E, dip 0.5° N) are compared with those of Jicamarca (12° S, 76.9° W, dip 2° N). Neutral wind simulations of present model agree well with those of horizontal wind model (HWM-93). The post-sunset enhancement and its reversal are also discussed.  相似文献   

20.
Understanding the local generation rate of equatorial spread-F (ESF) is important for forecasting ionospheric scintillation. Using the GPS ionospheric scintillation/TEC and VHF radar data during March-April and September-October from 2010 to 2014, the occurrence of ionospheric scintillation, TEC fast fluctuation, and backscatter plume were studied. Through analyzing the simultaneous occurrence of ionospheric scintillation, TEC fast fluctuation and backscatter plume, the local generation rate of ESF over Sanya was investigated. The results show that the monthly generation rate varies between 0% and 68%. A significant equinoctial asymmetry of local generation rate of ESF can be found in 2010, 2013 and 2014. The local generation rate of ESF increases from 2010 to 2014 during March-April, while it does not have similar trend during September-October. The plasma vertical drift influenced by solar activity has a significant impact on the monthly generation rate. The equinoctial asymmetry of plasma vertical drift may contribute a lot to the equinoctial asymmetry of the generation rate of ESF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号