首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
吴季 《空间科学学报》2018,38(2):139-146
人类进入太空以来已经发射了近1万个人造航天器,其中大约10%执行的是空间科学和探测任务.近年来中国经济快速发展,提供了更多的基础研究经费,经济转型也对创新驱动发展提出了更高需求,中国对空间科学的投入开始逐年增加.2015年以来先后成功发射了悟空号、实践十号、墨子号和慧眼号4颗科学卫星,天宫2号空间实验室也成功实施了一系列空间科学实验.重要科学发现和成果正在不断地产出.空间科学卫星任务(或称计划)与应用卫星从提出到评价都有很大不同,因此有必要对其所具有的特点进行分析,从而引导空间科学界从科学团队、技术团队到管理团队提高认识,确保未来的空间科学任务发挥最大效益,获得最大科学产出.   相似文献   

2.
The European Stratospheric Balloon Observatory (ESBO) initiative aims at simplifying the access to stratospheric balloon missions. We plan to provide platforms and support with instrument design in order to support scientists. During the design process, the inevitable question of qualification for the harsh flight conditions arises. Unfortunately, there is no existing standard for qualification of stratospheric ballooning hardware. Thus, we developed a qualification procedure for use within ESBO and similar projects.In this paper, we present our analysis of the environmental conditions in the stratosphere. While conditions at typical balloon float altitudes are similar to the space environment, there are also some relevant differences. For example, the thermal environment is dominated by radiation and thermal conduction, but the remaining atmosphere still supports a certain amount of convection. The remaining atmospheric pressure in the stratosphere also leads to reduced arcing distances. Vibrational loads are far less than for space missions, but quasi-static or shock loads may occur. The criticality of radiation increases with mission duration.Based on the environmental conditions, we present the qualification procedures for ESBO, which are based on the European Cooperation for Space Standardization (ECSS) standards for space systems. Overtesting against too high requirements leads to overengineering, driving mission cost and mitigating the advantages of balloons over space missions. Therefore, we modified the ECSS standards to fit typical scientific ballooning missions over several days at altitudes up to 40 km. Furthermore, we analyzed design rules for space systems with regard to their relevance for scientific ballooning, including material and component selection. We present the experience from the hardware qualification process for the ESBO prototype STUDIO (Stratospheric UV Demonstrator of an Imaging Observatory). Even though boundary conditions are different for each individual mission, we aimed for a broader approach: We investigated more general requirements for scientific ballooning missions to support future flights.  相似文献   

3.
空间科学实验地面支持系统平台   总被引:1,自引:0,他引:1  
相对于其他空间任务, 空间科学实验具有用户分散、实验进程控制 (遥科学实验)要求实时或准实时、多种类型空间科学数据处理要求等特点. 针对空间科学实验的特点和对地面支持系统的要求, 结合实践八号卫星(SJ-8)、探测双星(TC-1, TC-2) 和神舟系列飞船(SZ) 的空间科学实验地面支持系统的任务完成情况, 以及未来空间科学实验任务的需求, 提出了地面支持系统平台的构架设想. 该系统平台支持空间科学实验的状态监视与控制, 支持遥科学实验, 能够支持空间科学实验数据标准产品的定制处理, 满足空间科学实验多任务的要求, 具有通用性和可扩展性.   相似文献   

4.
深低温环路热管是一种高效的深低温两相传热器件,未来可广泛应用于红外探测等空间项目的低温热控系统。为有效减小热管与热负荷间的接触热阻及热管的背向漏热,采用氧化锆作为毛细芯材料,研发了氮工质平板蒸发器环路热管,重点研究了热管的自启动特性、传热性能以及在间歇性热负荷下的运行情况。结果表明:在无辅助情况下,液氮温区平板蒸发器环路热管自启动性能良好,可依靠工质扩散从室温迅速降温至液氮温区。环路热管能够在70~100 K温区稳定运行,热阻随运行温度和热负荷的上升而减小,最大传热功率为15 W,最小热阻为0.8 K/W。在蒸发器间歇性加热的情况下,环路热管可以保持温度稳定,热响应迅速,无需二次降温。液氮温区平板蒸发器环路热管有效满足了空间低温光学系统的热控制系统的热传输需求。   相似文献   

5.
The European Space Agency's studies of a Comet Nucleus Sample Return mission (ROSETTA) as its Planetary Cornerstone in its long-term programme 'Horizon 2000' and the Marsnet mission, a potential contribution of the Agency to an international network of surface stations on Mars, has revived the interest in the present state of Planetary Protection requirements. MARSNET was one of the four candidate missions selected in April 1991 for further Design Feasibility (Phase A) Studies. Furthermore, of all space agencies participating in planetary exploration activities only the United States National Aeronautics and Space Administration had a well established Planetary Protection Policy on Viking and other relevant planetary missions, whereas ESA is considering the feasibility and potential impact of a planetary protection policy on its Marsnet mission, within the framework of a tight budgetary envelope applicable to ESA's medium (M) class missions. This paper will discuss in general terms the impact of Planetary Protection measures, its implications for Marsnet and the issues arising from this for the implementation of the mission in ESA's scientific programme.  相似文献   

6.
The National Aeronautics and Space Administration (NASA) administrator has identified protection from radiation hazards as one of the two biggest problems of the agency with respect to human deep space missions. The intensity and strength of cosmic radiation in deep space makes this a 'must solve' problem for space missions. The Moon and two Earth-Moon Lagrange points near Moon are being proposed as hubs for deep space missions. The focus of this study is to identify approaches to protecting astronauts and habitats from adverse effects from space radiation both for single missions and multiple missions for career astronauts to these destinations. As the great cost of added radiation shielding is a potential limiting factor in deep space missions, reduction of mass, without compromising safety, is of paramount importance. The choice of material and selection of the crew profile play major roles in design and mission operations. Material trade studies in shield design over multi-segmented missions involving multiple work and living areas in the transport and duty phase of space mission's to two Earth-Moon co-linear Lagrange points (L1) between Earth and the Moon and (L2) on back side of the moon as seen from Earth, and to the Moon have been studied. It is found that, for single missions, current state-of-the-art knowledge of material provides adequate shielding. On the other hand, the choice of shield material is absolutely critical for career astronauts and revolutionary materials need to be developed for these missions. This study also provides a guide to the effectiveness of multifunctional materials in preparation for more detailed geometry studies in progress.  相似文献   

7.
The planning and execution of manned and robotic missions to Mars present a wide range of jurisprudential issues. Provisions to prevent the disruption of natural celestial environments, as well as damage to the environment of Earth by the return of extraterrestrial materials, are important components of the law applicable to mankind's activities in outer space, and have been supplemented by scientifically instituted planetary protection policies. However, divergent legal regimes may exist, as the space treaties in force are neither uniform in their provisions, nor identical as to the states which have signed, ratified, or adopted the international agreements. The legal requirements applicable to a specific mission will vary depending on the entities conducting the program and specific mission profile. This article analyzes the divergent international legal regimes together with the factors which will influence the determination of the standards of conduct which will govern manned and robotic missions to Mars.  相似文献   

8.
Long-term human missions in space, such as the establishment of a human-tended lunar base, require autonomous life support systems. A Lunar Engineered Closed/Controlled EcoSystem (LECCES) can provide autonomy by integrating a human module with support plant and animal modules, and waste treatment subsystems. Integration of physical/chemical (P/C) and biological waste treatment subsystems can lead to viable and operational bioregenerative systems that minimize resupply requirements from Earth. A top-level diagram for LECCES is developed based on the human module requirements. The proposed diagram is presented and its components are discussed.  相似文献   

9.
Extended manned space missions will require regenerative life support techniques. Past U.S. manned missions used nonregenerative expendables, except for a molecular sieve-based carbon dioxide removal system aboard Skylab. The resupply penalties associated with expendables becomes prohibitive as crew size and mission duration increase. The U.S. Space Station, scheduled to be operational in the 1990's, is based on a crew of four to sixteen and a resupply period of 90 days or greater. It will be the first major spacecraft to employ regenerable techniques for life support. The paper uses the requirements for the Space Station to address these techniques.  相似文献   

10.
Radiative cooling of IR space telescopes is an alternative to embedding within massive cryostats and should offer advantages for future missions, including longer life, larger aperture for a fixed spacecraft size, lower cost due to less complex engineering, and easier ground handling. Relatively simple analyses of conventional designs show that it is possible to achieve telescope temperatures in the range of 25 to 40 K at distances from the sun of about 1 AU. Lower temperatures may be possible with “open” designs or distant orbits. At 25 K, an observatory will be limited by the celestial thermal background in the near- and mid-IR and by the confusion limit in the far-IR. We outline here our concept for a moderate aperture ( 1.75 m; Ariane 4 or Atlas launch) international space observatory for the next decade.  相似文献   

11.
United Nations Space Treaties [10 and 11] require the preservation of planets and of Earth from contamination. All nations part to these Treaties shall take measures to prevent forward and backward contamination during missions exploring our solar system. As observer for the United Nations Committee on Peaceful Uses of Outer Space, the COSPAR (Committee of Space Research) defines and handles the applicable policy and proposes recommendations to Space Agencies [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005. http://www.cosparhq.org/scistr/PPPolicy.htm.]. The goal is to protect celestial bodies from terrestrial biological contamination as well as to protect the Earth environment from an eventual biohazard which may be carried by extraterrestrial samples or by space systems returning to Earth. According to the applicable specifications, including in our case the French requirements [CNES, System Safety. Planetary Protection Requirements. Normative referential CNES RNC-CNES-R-14, CNES Toulouse, ed. 4, 04 October 2002.], the prevention of forward contamination is accomplished by reducing the bioburden on space hardware to acceptable, prescribed levels, including in some instances system sterilization, assembling and integrating the appropriate spacecraft systems in cleanrooms of appropriate biological cleanliness, avoiding or controlling any recontamination risk, and limiting the probability impact of space systems. In order to prepare for future exploration missions [Debus, A., Planetary protection: organization requirements and needs for future planetary exploration missions, ESA conference publication SP-543, pp 103–114, 2003.], and in particular for missions to Mars requiring to control the spacecraft bioburden, a test program has been developed to evaluate the biological contamination under the fairing of the Ariane 5 launcher.  相似文献   

12.
深空天文自主导航技术发展综述   总被引:1,自引:0,他引:1       下载免费PDF全文
航天器地面无线电导航在深空中面临着信息传输时延长、数据传输率低、天体遮挡等问题,难以满足未来深空探测的导航需求。天文自主导航技术利用天文信息为航天器提供导航支持,可有效提高其在深空中的生存能力及任务执行能力,已成为深空导航领域的研究热点。结合国内外深空探测任务及其实际工程需求,首先概述了深空天文自主导航技术发展的现状和特点,进而总结了深空天文自主导航的发展趋势和重点研究内容,最后对深空天文自主导航技术的发展提出了若干建议。  相似文献   

13.
A controlled ecological life-support system (CELSS) is required to sustain life for long-duration space missions. The challenge is preparing a wide variety of tasty, familiar, and nutritious foods from CELSS candidate crops under space environmental conditions. Conventional food processing technologies will have to be modified to adapt to the space environment. Extrusion is one of the processes being examined as a means of converting raw plant biomass into familiar foods. A nutrition-improved pasta has been developed using cowpea as a replacement for a portion of the durum semolina. A freeze-drying system that simulates the space conditions has also been developed. Other technologies that would fulfill the requirements of a CELSS will also be addressed.  相似文献   

14.
地外天体着陆点选择综述与展望   总被引:1,自引:0,他引:1       下载免费PDF全文
行星表面具有科学研究价值的区域往往地形复杂,对着陆的安全性提出了很高的要求。如何选择既满足工程约束又具有很好科学价值的着陆点,在提高任务可靠性的同时获得最优的科学回报,成为未来行星着陆任务需要解决的首要问题之一。回顾了以往地外天体着陆任务的着陆点分布情况,总结归纳了着陆点选取过程中需要考虑的因素,分析了当前的研究现状并给出一般选取流程,最后针对我国未来深空探测任务着陆点选择问题提出了一些思考与建议。  相似文献   

15.
Deep space environments for human exploration.   总被引:3,自引:0,他引:3  
Mission scenarios outside the Earth's protective magnetic shield are being studied. Included are high usage assets in the near-Earth environment for casual trips, for research, and for commercial/operational platforms, in which career exposures will be multi-mission determined over the astronaut's lifetime. The operational platforms will serve as launching points for deep space exploration missions, characterized by a single long-duration mission during the astronaut's career. The exploration beyond these operational platforms will include missions to planets, asteroids, and planetary satellites. The interplanetary environment is evaluated using convective diffusion theory. Local environments for each celestial body are modeled by using results from the most recent targeted spacecraft, and integrated into the design environments. Design scenarios are then evaluated for these missions. The underlying assumptions in arriving at the model environments and their impact on mission exposures within various shield materials will be discussed.  相似文献   

16.
This paper is one of the components of a larger framework of activities whose purpose is to improve the performance and productivity of space mission systems, i.e. to increase both what can be achieved and the cost effectiveness of this achievement. Some of these activities introduced the concept of Functional Architecture Module (FAM); FAMs are basic blocks used to build the functional architecture of Plan Management Systems (PMS). They also highlighted the need to involve Science Operations Planning Expertise (SOPE) during the Mission Design Phase (MDP) in order to design and implement efficiently operation planning systems. We define SOPE as the expertise held by people who have both theoretical and practical experience in operations planning, in general, and in space science operations planning in particular. Using ESA’s methodology for studying and selecting science missions we also define the MDP as the combination of the Mission Assessment and Mission Definition Phases. However, there is no generic procedure on how to use FAMs efficiently and systematically, for each new mission, in order to analyse the cost and feasibility of new missions as well as to optimise the functional design of new PMS; the purpose of such a procedure is to build more rapidly and cheaply such PMS as well as to make the latter more reliable and cheaper to run. This is why the purpose of this paper is to provide an embryo of such a generic procedure and to show that the latter needs to be applied by people with SOPE during the MDP. The procedure described here proposes some initial guidelines to identify both the various possible high level functional scenarii, for a given set of possible requirements, and the information that needs to be associated with each scenario. It also introduces the concept of catalogue of generic functional scenarii of PMS for space science missions. The information associated with each catalogued scenarii will have been identified by the above procedure and will be relevant only for some specific mission requirements. In other words, each mission that shares the same type of requirements that lead to a list of specific catalogued scenarii can use this latter list of scenarii (regardless of whether the mission is a plasma, planetary, astronomy, etc. mission). The main advantages of such a catalogue are that it speeds-up the execution of the procedure and makes the latter more reliable. Ultimately, the information associated to each relevant scenario (from the catalogue or freshly generated by the procedure) will then be used by mission designers to make informed decisions, including the modification of the mission requirements, for any missions. In addition, to illustrate the use of such a procedure, the latter is applied to a case study, i.e. the Cross-Scale mission. One of the outcomes of this study is an initial set of generic functional scenarii. Finally, although border line with the above purpose of this paper, we also discuss multi-spacecraft specific issues and issues related to the on-board execution of the plan update system (PUS). In particular, we show that the operation planning cost of N spacecraft is not equal to N times the cost of 1 spacecraft and that on-board non-synchronised operation will not require inter-spacecraft communication. We also believe that on-board PUS should be made possible for all missions as a standard.  相似文献   

17.
Nowadays, nano- and micro-satellites, which are smaller than conventional large satellites, provide access to space to many satellite developers, and they are attracting interest as an application of space development because development is possible over shorter time period at a lower cost. In most of these nano- and micro-satellite missions, the satellites generally must meet strict attitude requirements for obtaining scientific data under strict constraints of power consumption, space, and weight. In many satellite missions, the jitter of a reaction wheel degrades the performance of the mission detectors and attitude sensors; therefore, jitter should be controlled or isolated to reduce its effect on sensor devices. In conventional standard-sized satellites, tip-tilt mirrors (TTMs) and isolators are used for controlling or isolating the vibrations from reaction wheels; however, it is difficult to use these devices for nano- and micro-satellite missions under the strict power, space, and mass constraints. In this research, the jitter of reaction wheels is reduced by using accurate sensors, small reaction wheels, and slow rotation frequency reaction wheel instead of TTMs and isolators. The objective of a reaction wheel in many satellite missions is the management of the satellite’s angular momentum, which increases because of attitude disturbances. If the magnitude of the disturbance is reduced in orbit or on the ground, the magnitude of the angular momentum that the reaction wheels gain from attitude disturbances in orbit becomes smaller; therefore, satellites can stabilize their attitude using only smaller reaction wheels or slow rotation speed, which cause relatively smaller vibration. In nano- and micro-satellite missions, the dominant attitude disturbance is a magnetic torque, which can be cancelled by using magnetic actuators. With the magnetic compensation, the satellite reduces the angular momentum that the reaction wheels gain, and therefore, satellites do not require large reaction wheels and higher rotation speed, which cause jitter. As a result, the satellite can reduce the effect of jitter without using conventional isolators and TTMs. Hence, the satellites can achieve precise attitude control under low power, space, and mass constraints using this proposed method. Through the example of an astronomical observation mission using nano- and micro-satellites, it is demonstrated that the jitter reduction using small reaction wheels is feasible in nano- and micro-satellites.  相似文献   

18.
磁场测量是深空探测的重要任务之一,通过磁场可以遥感行星内部、研究行星演化历史、认知太阳系天体空间环境。基于法拉第电磁感应原理的磁通门磁强计,因空间适应性强、技术成熟度高、可靠性高等特点,是深空磁场测量最为常用的载荷。简要描述了磁通门磁强计的基本测量原理,探讨了地面和在轨标定的原理和实施方法,并介绍了磁强计在空间任务中的应用方式。目前,我国已经具备了星载高精度磁通门磁强计的研制能力。在不久的将来,磁通门磁强计有望在深空探测任务中发挥重要作用。  相似文献   

19.
空间增材制造技术的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
中国空间站旨在进行大量在轨科学实验和空间应用研究,在轨保障是支持空间站在全寿命周期内完成载人航天任务的重要途径.传统地面制造及上行补给方式难以满足较大规模应用的需求,亟需一种创新性的保障模式突破资源瓶颈,空间增材制造技术具有极大的潜力实现即造即用的资源保障模式.本文根据空间增材制造技术的最新研究进展,结合中国空间站和载人深空探测任务需求,对空间增材制造技术的在轨应用模式进行分析,提出了中国空间增材制造技术未来发展所面临的问题和解决途径.   相似文献   

20.
航天测控网资源均衡分配的调度方法   总被引:1,自引:0,他引:1  
研究了航天测控网资源集中管理、统一分配的工作模式,以及满足多星测控任务的测控网资源调度方法。提出了测控网均衡调度的方法。首先面向任务,将卫星测控任务按优先级划分,按最优分配的原则进行分配,使测控网能够支持的任务数量大;在此基础上,考虑测控站负荷和备份再进行优化,使测控网内各测控站的负荷均衡。相比其他方法,考虑了任务执行的成功概率,各测控站任务分配更均匀,便于测控网的管理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号