首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
2.
We have found compact, near-nuclear X-ray sources in 21 (54%) of a complete sample of 39 nearby face-on spiral and elliptical galaxies with available ROSAT HRI data. ROSAT X-ray luminosities (0.2 – 2.4 keV) of these compact X-ray sources are ∼1037 – 1040 erg s−1. The mean displacement between the location of the compact X-ray source and the optical photometric center of the galaxy is ∼390 pc. ASCA spectra of six of the 21 galaxies show the presence of a hard component with relatively steep (Γ ≈ 2.5) spectral slope. A multicolor disk blackbody plus power-law model fits the data from the spiral galaxies well, suggesting that the X-ray objects in these galaxies may be similar to a black hole candidate (BHC) in its soft (high) state. ASCA data from the elliptical galaxies indicate that hot (kT ≈ 0.7 keV) gas dominates the emission. The fact that the spectral slope of the spiral galaxy sources is steeper than in normal type 1 active galactic nuclei (AGNs) and that relatively low absorbing columns (NH ≈ 1021 cm−2) were found to the power-law component indicates that these objects are somehow geometrically and/or physically different from AGNs in normal active galaxies. The X-ray sources in the spiral galaxies may be BHCs, low-luminosity AGNs, or possibly X-ray luminous supernovae. We estimate the black hole masses of the X-ray sources in the spiral galaxies (if they are BHCs or AGNs) to be ∼102–103 M. The X-ray sources in the elliptical galaxies may be BHCs, AGNs or young X-ray supernova also.  相似文献   

3.
Astrosat will be the first full-fledged Indian Astronomy mission aimed at multiwavelength studies in the optical, near- and far-UV and a broad X-ray spectral band covering 0.5–100 keV. This mission will have the capability of high time-resolution X-ray studies (10 μs timing), low and medium energy-resolution spectral studies and high angular-resolution (about 2″) imaging observations in the UV and optical bands simultaneously. This is realized by using a set of three co-aligned X-ray astronomy instruments and one UV imaging telescope consisting of two similar instruments. Detection and timing studies of X-ray transients and persisting sources will be done by a Scanning Sky X-ray Monitor. This mission will enable studies of different classes of galactic and extragalactic sources in the frontier area of high energy astronomy. Scientific objectives of the mission are highlighted in this paper. A brief summary of the design and characteristics of the X-ray and UV instruments and their expected sensitivities are presented.  相似文献   

4.
The ROSAT mission, which is currently being prepared in W.-Germany, will perform the first soft X-ray all-sky survey by means of a large imaging X-ray telescope. Detailed calculations under the cost, volume and mass constraint of the satellite being a Shuttle payload have led to a design of the imaging optics with optimized geometry. The mirror system is of the Wolter type I configuration and includes four nested shells with a maximum aperture of 835 mm and a focal length of 2400 mm. The on-axis angular resolution of the mirror assembly has been specified to 5 arcsec with a scattering level as low as 3% for single reflection at 1.5 keV photon energy. Construction and technology studies have been completed by now and manufacturing of the first mirror shell has begun.  相似文献   

5.
One of the main objectives of the ROSAT mission turned out to be the study of active galactic nuclei. The soft energy range of the X-Ray Telescope combined with the good energy resolution of the PSPC detector allows an investigation of the spectral properties of sources in this energetically important energy band. The high sensitivity of the instrument in the All Sky Survey will yield more than 25000 previously unknown X-ray AGN for the statistical and morphological exploration of these objects.

A short overview is given of the actual ongoing research which ranges from the detailed spectral study of some well known objects and correlations of samples of AGN with existing catalogues at other wavelengths to identification programmes for large numbers of suspected AGN candidates.  相似文献   


6.
The First Spacelab Flight - scheduled for September 1983 - will carry a multidisciplinary payload intended to demonstrate that valuable scientific results can be achieved with such short duration missions. The payload complement includes a spectrometer to undertake observations of the brighter cosmic X-ray sources. The primary scientific objectives of this experiment are the study of detailed spectral features in cosmic X-ray sources and their associated temporal variations over a wide energy range from about 2 keV up to 80 keV. The instrument based on the gas scintillation proportional counter, will have an effective area of some 180 cm2 with an energy resolution of ~ 9% FWHM at 7 keV. The key performance parameters of the instrument, which include calibration results and the sensitivity of the planned observations, are discussed.  相似文献   

7.
The Stratospheric Observatory for Infrared Astronomy (SOFIA) is a joint US/German Project to develop and operate a gyrostabilized 2.5-m telescope in a Boeing 747-SP. This observatory will allow astronomical observations from 0.3 μm to sub-millimeter wavelengths at stratospheric altitudes as high as 45,000 ft where the atmosphere is not only cloud-free, but largely transparent at infrared wavelengths. The dynamics and chemistry of interstellar matter, and the details of embedded star formation will be key science goals. In addition, SOFIA’s unique portability will enable large-telescope observations at sites required to observe transient phenomena and location specific events. SOFIA will offer the convenient accessibility of a ground-based telescope for servicing, maintenance, and regular technology upgrades, yet will also have many of the performance advantages of a space-based telescope. Initially, SOFIA will fly with nine first-generation focal plane instruments that include broad-band imagers, moderate resolution spectrographs that will resolve broad features from dust and large molecules, and high resolution spectrometers capable of studying the chemistry and detailed kinematics of molecular and atomic gas. First science flights will begin in 2010, leading to a full operations schedule of about 120 8–10 h flights per year by 2014. The next call for instrument development that can respond to scientifically exciting new technologies will be issued in 2010. We describe the SOFIA facility and outline the opportunities for observations by the general scientific community with cutting edge focal plane technology. We summarize the operational characteristics of the first-generation instruments and give specific examples of the types of fundamental scientific studies these instruments are expected to make.  相似文献   

8.
For the future Japanese exploration mission of the Jupiter’s magnetosphere (JMO: Jupiter Magnetospheric Orbiter), a unique instrument named JUXTA (Jupiter X-ray Telescope Array) is being developed. It aims at the first in-situ measurement of X-ray emission associated with Jupiter and its neighborhood. Recent observations with Earth-orbiting satellites have revealed various X-ray emission from the Jupiter system. X-ray sources include Jupiter’s aurorae, disk emission, inner radiation belts, the Galilean satellites and the Io plasma torus. X-ray imaging spectroscopy can be a new probe to reveal rotationally driven activities, particle acceleration and Jupiter–satellite binary system. JUXTA is composed of an ultra-light weight X-ray telescope based on micromachining technology and a radiation-hard semiconductor pixel detector. It covers 0.3–2 keV with the energy resolution of <100 eV at 0.6 keV. Because of proximity to Jupiter (∼30 Jovian radii at periapsis), the image resolution of <5 arcmin and the on-axis effective area of >3 cm2 at 0.6 keV allow extremely high photon statistics and high resolution observations.  相似文献   

9.
In the past three years, a new era of study of globular clusters has begun with multiwavelength observations from the current generation of astronomical telescopes in space. We review the recent results obtained from our studies of compact binaries and x-ray sources in globulars with ROSAT and HST as well as our balloon-borne hard x-ray telescope EXITE and ground-based observations (CTIO). With ROSAT, we have obtained the most sensitive high resolution soft x-ray images of clusters which show multiple low luminosity sources in cluster cores that are likely indicative of the long-sought population of cataclysmic variables (CVs). We have obtained deep H images of two clusters with HST and found CV candidates for 3 of the ROSAT sources in the core of NGC 6397. New CTIO imaging and spectroscopy of two ‘dim source’ fields in ω-Cen are also described. With EXITE we carried out the first hard x-ray imaging observations of the cluster 47 Tuc; such studies can ultimately limit the populations of millisecond pulsars and pulsar emission mechanisms. A long ROSAT exposure on 47 Tuc also shows probable cluster diffuse emission, possibly due to hot gas from ablating millisecond pulsars. Multiwavelength studies of globular clusters may provide new constraints on problems as diverse as the origin of CVs and LMXBs and the origin of hot gas in globulars.  相似文献   

10.
The Hadamard X-ray Spectro-telescope consists of a flat Bragg crystal, an Hadamard mask and an imaging proportional counter. We have achieved α??α≈50, which is limited by the position resolution of the detector. This telescope is useful to observe the spectral structure of extended X-ray sources. We introduce a new type of read out method (Grouped Wire Method) for the position sensitive proportional counter in order to get high energy and position resolutions for the Hadamard Spectro-telescope. In principle, this method is capable of obtaining the desired linearity over the whole area of the detector.  相似文献   

11.
Infrared Telescope in Space (IRTS) is a cryogenically cooled small infrared telescope aboard the small space platform, SFU (Space Flyer Unit). IRTS has a telescope of 15 cm diameter, which is rather small compared with other big space missions. IRTS, however, is optimized to observe extended diffuse sources with four focal plane instruments which have wide wavelength coverage from the near infrared to the submillimeter region.

All instruments have been calibrated with a test cryostat, and integrated into the flight cryostat. Cooling tests of the whole IRTS system have confirmed that instruments and cryostat will perform as expected. Integration of the IRTS on the SFU will soon begin and the ground tests of the SFU system will be conducted in the coming year.

The launch of the SFU will be in early 1995. The IRTS will survey the 10% of the sky during the three week mission and provide significant scientific results on cosmology, galactic structure, interstellar matter, stars, and solar system.  相似文献   


12.
A directional detector for γ-ray astronomy has been developed to image sources in the energy range 0.1 to 5 MeV. An array of 35 gain stabilized bismuth germanate detectors, together with a coded aperture mask based on a Uniformly Redundant Array (URA), allows imaging in 4° square sky bins over a 16° X 24° field-of-view. The position of a strong point source, such as the Crab Nebula, can be determined to within ?1°. A complementary “anti-mask” greatly reduces systematic effects arising from non-uniform background rates amongst the detectors. The telescope has an effective area of 190 cm2 and an energy resolution of 19.5% FWHM at 662 keV. Results of laboratory tests of the imaging system, including the ability to image multiple sources, uniformity of response over the field-of-view, and the effect of the “anti-mask”, are in good agreement with computer simulations. Features of the flight detector system are described and results of laboratory tests and computer simulations are reviewed. A balloon flight of the telescope is planned for the fall of 1982.  相似文献   

13.
The Broad Band X-Ray Telescope (BBXRT) was designed to perform sensitive, moderate resolution spectroscopy of cosmic X-ray sources in the 0.3–10 keV band from the Space Shuttle. During its nine-day flight in December, 1990, the BBXRT observed a variety of supernova remnants and related objects. We present results from some of these observations, emphasizing the ability of the BBXRT to perform spatially-resolved spectroscopy. The improved spectral resolution and efficiency over previous instruments makes possible measurements of previously undetectable lines, and the broad bandpass allows simultaneous measurements of lines from oxygen through iron.  相似文献   

14.
The ROSAT (Röntgensatellit) X-ray astronomy satellite has completed the first all-sky X-ray and XUV survey with imaging telescopes. About 60,000 new X-ray and 400 new XUV /1/ sources were detected. This contribution will deal with preliminary results from the ROSAT ALL-SKY X-RAY SURVEY. The ROSAT diffuse and point-source X-ray skymaps, the positional accuracy obtained for the X-ray sources, and a few results from correlations performed with available catalogues in various energy bands like the Radio, Infrared, Visible, UV, and hard X-rays as well as identifications from optical follow-up observations are presented.  相似文献   

15.
Contemporary gamma-ray spectroscopy instruments and their results are reviewed. Sensitivities of 10?4 to 10?3 ph/cm2-sec have been achieved for steady sources and 10?2 to 1 ph/cm2-sec for transient sources. This has led to the detection of gamma-ray lines from more than 40 objects representing 6 classes of astrophysical phenomena. The lines carry model-independent information and are of fundamental importance to theoretical modeling and our understanding of the objects. These results indicate that gamma-ray spectroscopy is relevant to a wide range of astrophysical problems and is becoming a major part of astronomy. The objectives and anticipated results of future instruments are discussed. Several instruments in development will have a factor of ~ 10 sensitivity improvement to certain phenomena over contemporary instruments. A factor of ~ 100 improvement in sensitivity will allow the full potential of gamma-ray spectroscopy to be realized. Instrument concepts which would achieve this with both present and advanced techniques are discussed.  相似文献   

16.
A multiwire proportional counter capable of imaging soft X-rays has been constructed. The position of an incident photon is obtained by measuring the induced charge signals on two orthogonal sets of cathode wire grids. The anode signal is used as trigger and energy signal. At a photon energy of 0.94 keV the achieved position resolution is 300 μm (FWHM), and the energy resolution is 45% (FWHM). With a five sided anticoincidence the background rejection efficiency is 90–95%.A small version of the counter has successfully been flown twice on sounding rocket payloads. X-ray images of the supernova remnants Puppis A and Cassiopeia A have been taken. As the prime focal plane detector for the ROSAT project we are building a version with an aperture of 80 mm.  相似文献   

17.
Europe is one of the major partners building the International Space Station (ISS) and European industry, together with ESA, is responsible for many station components including the Columbus Orbital Facility, the Automated Transport Vehicle, two connecting modules and the European Robotic Arm. Together with this impressive list of contributions there is a strong desire within the ESA Member States to benefit from this investment by utilizing the unique capabilities of the ISS to perform world-class science. XEUS is one of the astronomical applications being studied by ESA to utilize the capabilities of the ISS. XEUS will be a long-term X-ray observatory with an initial mirror area of 6 m2 at 1 keV that will be expanded to 30 m2 following a visit to the ISS. The 1 keV spatial resolution is expected to be 2–5″ half-energy-width. XEUS will consist of separate detector and mirror spacecraft (MSC) aligned by active control to provide a focal length of 50 m. A new detector spacecraft, complete with the next generation of instruments, will also be added after visiting the ISS. The limiting 0.1–2.5 keV sensitivity will then be 4 × 10−18 erg cm−2 s−1, around 200 times better than XMM-Newton, allowing XEUS to study the properties of the hot baryons and dark matter at high redshift.  相似文献   

18.
The Advanced X-ray Astrophysics Facility (AXAF) now under study is to be a long-lived X-ray observatory in space. It is to be launched by the Space Shuttle, maintainable on-orbit, and retrievable for ground re-furbishment. The AXAF is conceived as an X-ray telescope with 6 nested grazing incidence X-ray mirrors (with a maximum aperture of 1.2 m) and interchangeable and replaceable focal plane instruments. The optics will provide 0.5 arcsecond imagery over a several arcminute field and somewhat reduced resolution over 1 degree in the X-ray band from 0.1 to 10 keV (1.2 to 120 A). The characteristics and expected performance of the observatory are described.  相似文献   

19.
The present status of the ESA cornerstone mission FIRST is presented. A recent industrial study has generated a spacecraft concept employing a 4.5 m passively cooled telescope with focal plane instrument cooling provided by a superfluid helium cryostat. The model payload complement includes two direct detection instruments as well as two heterodyne instruments. After a shared launch by Ariane 5 into GTO, FIRST propels itself into the 24-hour highly eccentric operational orbit, where observations can be conducted up to 17 hours per day with an expected approximate mission duration of 3 years. An additional complementary study of a non-cryostat spacecraft option will also be performed.  相似文献   

20.
The combination of the large effective area and the very low internal background of the ROSAT Position Sensitive Proportional Counter provides an extremely sensitive instrument for the study of diffuse X-ray sources. In this paper we review new results on the X-ray structure of nearby clusters as measured with ROSAT. Substructure is a common feature in these objects. Such structure provides evidence that clusters have formed relatively recently through mergers of relatively large subunits. This behavior is predicted by hierarchical formation theories in a dense universe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号