首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Extremely acid (pH <1) saline lakes and groundwaters existed in the mid-Permian of the mid-continent of North America. Modern counterparts have been found in acid saline lake systems throughout southern Australia. We compare and contrast the Permian Opeche Shale of North Dakota and Nippewalla Group of Kansas to modern Australian salt lakes in southern Western Australia and in northwest Victoria. With the exception of some minor variations in pH, evaporite mineralogy, and water geochemistry, the Permian and modern systems are similar and characterized by: (1) ephemeral saline continental playas hosted by red siliciclastic sediments, (2) evaporite minerals, including abundant sulfates, (3) Al-Fe-Si-rich waters with low pH values, (4) acidophilic microbes, and (5) paucity of carbonates. The composition of these terrestrial systems is strikingly similar to compositional data returned from the martian surface. Specifically, both Earth and martian systems have high amounts of iron oxides and sulfates, and little, if any, carbonates. We propose that the modern and ancient terrestrial acid saline environments may be good analogs for possible environments on Mars.  相似文献   

2.
Life and living systems need several important factors to establish themselves and to have a continued tradition. In this article the nature of the borderline situation for microbial life under heavy salt stress is analyzed and discussed using the example of biofilms and microbial mats of sabkha systems of the Red Sea. Important factors ruling such environments are described, and include the following: (1) Microbial life is better suited for survival in extremely changing and only sporadically water-supplied environments than are larger organisms (including humans). (2) Microbial life shows extremely poikilophilic adaptation patterns to conditions that deviate significantly from conditions normal for life processes on Earth today. (3) Microbial life adapts itself to such extremely changing and only ephemerally supportive conditions by the capacity of extreme changes (a) in morphology (pleomorphy), (b) in metabolic patterns (poikilotrophy), (c) in survival strategies (poikilophily), and (d) by trapping and enclosing all necessary sources of energy matter in an inwardly oriented diffusive cycle. All this is achieved without any serious attempt at escaping from the extreme and extremely changing conditions. Furthermore, these salt swamp systems are geophysiological generators of energy and material reservoirs recycled over a geological time scale. Neither energy nor material is wasted for propagation by spore formation. This capacity is summarized as poikilophilic and poikilotroph behavior of biofilm or microbial mat communities in salt and irradiationstressed environmental conditions of the sabkha or salt desert type. We use mainly cyanobacteria as an example, although other bacteria and even eukaryotic fungi may exhibit the same potential of living and surviving under conditions usually not suitable for life on Earth. It may, however, be postulated that such poikilophilic organisms are the true candidates for life support and survival under conditions never recorded on Planet Earth. Mars and some planets of other suns may be good candidates to search for life under conditions normally not thought to be favorable for the maintenance of life.  相似文献   

3.
Gypsum filled "pipe" features were discovered in the proglacial area of the Borup Fiord Pass supraglacial sulfur spring. Stable isotope data suggest that gypsum is formed through oxidation of sulfides and are consistent with models of sulfuric acid speleogenesis. These results suggest that gypsum pipes are paleo-spring discharge channels analogous to those that feed the modern sulfur spring at Borup Fiord. A conceptual model is proposed whereby retreat of the glacial front and associated growth of permafrost in ground exposed now to low arctic temperatures leads to "freezing-in" of the spring system and abandonment of old channels in favor of more open flow systems in the subglacial region. Results provide a model for glacially driven groundwater systems that may form in association with Mars' polar icecaps and potential geological signatures for paleo-groundwater discharge.  相似文献   

4.
In this study, we utilized transmission electron microscopy to examine the contents of fluid inclusions in halite (NaCl) and solid halite crystals collected 650 m below the surface from the Late Permian Salado Formation in southeastern New Mexico (USA). The halite has been isolated from contaminating groundwater since deposition approximately 250 Ma ago. We show that abundant cellulose microfibers are present in the halite and appear remarkably intact. The cellulose is in the form of 5 nm microfibers as well as composite ropes and mats, and was identified by resistance to 0.5 N NaOH treatment and susceptibility to cellulase enzyme treatment. These cellulose microfibers represent the oldest native biological macromolecules to have been directly isolated, examined biochemically, and visualized (without growth or replication) to date. This discovery points to cellulose as an ideal macromolecular target in the search for life on other planets in our Solar System.  相似文献   

5.
In the driest parts of the Atacama Desert there are no visible life forms on soil or rock surfaces. The soil in this region contains only minute traces of bacteria distributed in patches, and conditions are too dry for cyanobacteria that live under translucent stones. Here we show that halite evaporite rocks from the driest part of the Atacama Desert are colonized by cyanobacteria. This colonization takes place just a few millimeters beneath the rock surface, occupying spaces among salt crystals. Our work reveals that these communities are composed of extremely resistant Chroococcidiopsis morphospecies of cyanobacteria and associated heterotrophic bacteria. This newly discovered endolithic environment is an extremely dry and, at the same time, saline microbial habitat. Photosynthetic microorganisms within dry evaporite rocks could be an important and previously unrecognized target for the search for life within our Solar System.  相似文献   

6.
Reproduction is a vital characteristic of life, and sex is the most common reproductive mode in the eukaryotic world. Sex and reproduction are not necessarily linked mechanisms: Sexuality without reproduction exists, while several forms of asexual reproduction are known. The occurrence of sexuality itself is paradoxical, as it is very costly in evolutionary terms. Most of the hypotheses (more than 20) attempting to explain the prevalence of sex fall into two categories: Sex either creates good gene combinations for adaptation to environments or eliminates bad gene combinations counteracting the accumulation of mutations. In spite of this apparent wealth of beneficial effects of sex, asexuality is not rare. Most eukaryotic, asexual lineages are short-lived and can only persist through the presence of sexual roots, but at least two animal groups, bdelloid rotifers and darwinulid ostracods, seem to claim the status of ancient asexuals. Research on (a)sexuality is relevant to astrobiology in a number of ways. First, strong relationships between the origin and persistence of life in extreme environments and reproductive mode are known. Second, the "habitability" of nonterrestrial environments to life greatly depends on reproductive mode. Whereas asexuals can do equally well or better in harsh environments, they fail to adapt fast enough to changing abiotic and biotic environments. Third, it has been shown that plants reproduce mainly asexually in space, and sperm production and motility in some vertebrates are hampered. Both findings indicate that extraterrestrial life under conditions different from Earth might be dominated by asexual reproduction. Finally, for exchange of biological material between planets, the choice of reproductive mode will be important.  相似文献   

7.
This experimental study investigated how the dynamics of the crystallization of the evaporite mineral halite could affect the accumulation and preservation of organic macromolecules present in the crystallizing solution. Halite was grown under controlled conditions in the presence of polymer nanoparticles that acted as an analog to protocellular material. Optical microscopy, atomic force microscopy, and laser scanning confocal fluorescence microscopy were used to trace the localization of the nanoparticles during and after growth of halite crystals. The present study revealed that the organic nanoparticles were not regularly incorporated within the halite, but were very concentrated on its surfaces. Their distribution was controlled dominantly by the morphologic surface features of the mineral rather than by specific molecular interactions with an atomic plane of the mineral. This means that the distribution of organic molecules was controlled by surfaces like those of halite's evaporitic growth forms. The experiments with halite also demonstrated that a mineral need not continuously incorporate organic molecules during its crystallization to preserve those molecules: After rejection by (non-incorporation into) the crystallizing halite, the organic nanoparticles increased in concentration in the evaporating brine. They ultimately either adsorbed in rectilinear patterns onto the hopper-enhanced surfaces and along discontinuities within the crystals, or they were encapsulated within fluid inclusions. Of additional importance in origin-of-life considerations is the fact that halite in the natural environment rapidly can change its role from that of a protective repository (in the absence of water) to that of a source of organic particles (as soon as water is present) when the mineral dissolves.  相似文献   

8.
“解放思想、实事求是”是邓小平理论的精髓,是我们党的思想路线的核心内容。在改革开放和社会主义建设中要坚持“解放思想、实事求是”的原则,立足于现代理论的视角,对“解放思想、实事求是”的理论精髓进行不断的思考与创新,不断开创建设有中国特色社会主义事业的新局面。  相似文献   

9.
Extremophiles thrive in ice, boiling water, acid, the water core of nuclear reactors, salt crystals, and toxic waste and in a range of other extreme habitats that were previously thought to be inhospitable for life. Extremophiles include representatives of all three domains (Bacteria, Archaea, and Eucarya); however, the majority are microorganisms, and a high proportion of these are Archaea. Knowledge of extremophile habitats is expanding the number and types of extraterrestrial locations that may be targeted for exploration. In addition, contemporary biological studies are being fueled by the increasing availability of genome sequences and associated functional studies of extremophiles. This is leading to the identification of new biomarkers, an accurate assessment of cellular evolution, insight into the ability of microorganisms to survive in meteorites and during periods of global extinction, and knowledge of how to process and examine environmental samples to detect viable life forms. This paper evaluates extremophiles and extreme environments in the context of astrobiology and the search for extraterrestrial life.  相似文献   

10.
Considerable data (primarily physiological) have been collected during expeditions in extreme environments over the last century. Physiological measurements have only recently been examined in association with the emotional or behavioral state of the subject. Establishing this psychophysiological relationship is essential to understanding fully the adaptation of humans to the stresses of extreme environments. This pilot study investigated the simultaneous collection of physiological, psychological and behavioral data from a two-man Greenland expedition in order to model how specific relationships between physiological and psychological adaptation to a polar environment may be identified. The data collected describes changes in adrenal and other hormonal activity and psychological functioning. Levels of cortisol and testosterone were calculated. Factors influencing the plasma profiles of the aforementioned included 24-hour sunlight, high calorific intake of more than 28 000 kJ/day and extreme physical exercise. There was a difference between individual psychological profiles as well as self-report stress and physiological stress.  相似文献   

11.
Hickman CS 《Astrobiology》2003,3(3):631-644
Metazoans in extreme environments have evolved mutualisms with microbes that extend the physical and chemical capabilities of both partners. Some of the best examples are bivalve molluscs in evaporite and hypersaline settings. Mollusc tissue is developmentally and evolutionarily amenable to housing vast numbers of symbiotic microbes. Documented benefits to the host are nutritional. Multiple postulated benefits to the microbes are related to optimizing metabolic performance at interfaces, where heterogeneity and steep gradients that cannot be negotiated by microbes can be spanned by larger metazoan hosts. A small cockle, Fragum erugatum, and its photosymbiotic microbes provide a remarkable example of a mutualistic partnership in the hypersaline reaches of Shark Bay, Western Australia. Lucinid bivalves and their endosymbiotic chemolithotrophic bacteria provide examples in which hosts span oxic/anoxic interfaces on behalf of their symbionts at sites of seafloor venting. Multiple lines of evidence underscore the antiquity of mutualisms and suggest that they may have played a significant role in life's first experiments above the prokaryotic grade of complexity. The study of metazoan-microbe mutualisms and their signatures in extreme environments in the geologic record will provide a significant augmentation to microbial models in paleobiology and astrobiology. There are strong potential links between mutualisms and the early history of life on Earth, the persistence of life in extreme environments at times of global crisis and mass extinction, and the possibilities for life elsewhere in the universe.  相似文献   

12.
吴大方  商兰  高镇同  蒲颖 《宇航学报》2015,36(9):1083-1092
针对高超声速飞行器面临极端高温热环境、飞行器外壳单侧面受热以及温度历程非线性时变的特点,自行设计并建立辐射式极端高温氧化环境下的单侧面试验加热装置,实现了1700℃高温有氧环境下对高超声速飞行器热防护材料的隔热性能试验测试。同时,对轻质陶瓷材料试验件和新型陶瓷、纳米材料复合结构在高达1700℃的高温氧化环境下的隔热性能进行试验测试,并对不同材料及其组合模式进行对比分析,优选高效能的隔热方案,发现陶瓷、纳米材料复合结构试验件比单层轻质陶瓷材料试验件的隔热效果提高了约50%。另外,生成了极端高温非线性时变热环境,并进行相应的隔热性能试验。通过建立极端高温、有氧、单侧面加热、非线性时变热环境试验系统及其实际应用研究,为高超声速飞行器的热防护设计提供重要的试验手段。  相似文献   

13.
Motivated by the increasingly abundant evidence for hypersaline environments on Mars and reports of methane in its atmosphere, we examined methanogenesis in hypersaline ponds in Baja California Sur, Mexico, and in northern California, USA. Methane-rich bubbles trapped within or below gypsum/halite crusts have δ13C values near -40‰. Methane with these relatively high isotopic values would typically be considered thermogenic; however, incubations of crust samples resulted in the biological production of methane with similar isotopic composition. A series of measurements aimed at understanding the isotopic composition of methane in hypersaline systems was therefore undertaken. Methane production rates, as well as the concentrations and isotopic composition of the particulate organic carbon (POC), were measured. Methane production was highest from microbial communities living within gypsum crusts, whereas POC content at gypsum/halite sites was low, generally less than 1% of the total mass. The isotopic composition of the POC ranged from -26‰ to -10‰. To determine the substrates used by the methanogens, 13C-labeled methylamines, methanol, acetate, and bicarbonate were added to individual incubation vials, and the methane produced was monitored for 13C content. The main substrates used by the methanogens were the noncompetitive substrates, the methylamines, and methanol. When unlabeled trimethylamine (TMA) was added to incubating gypsum/halite crusts in increasing concentrations, the isotopic composition of the methane produced became progressively lower; the lowest methane δ13C values occurred when the most TMA was added (1000 μM final concentration). This decrease in the isotopic composition of the methane produced with increasing TMA concentrations, along with the high in situ methane δ13C values, suggests that the methanogens within the crusts are operating at low substrate concentrations. It appears that substrate limitation is decreasing isotopic fractionation during methanogenesis, which results in these abnormally high biogenic methane δ13C values.  相似文献   

14.
It has been hypothesized in this journal and elsewhere, based on surveys of published data from prebiotic synthesis experiments and carbonaceous meteorite analyses, that basic amino acids such as lysine and arginine were not abundant on prebiotic Earth. If the basic amino acids were incorporated only rarely into the first peptides formed in that environment, it is important to understand what protobiotic chemistry is possible in their absence. As an initial test of the hypothesis that basic amino acid negative [BAA(-)] proteins could have performed at least a subset of protobiotic chemistry, the current work reports on a survey of 13 archaeal and 13 bacterial genomes that has identified 61 modern gene sequences coding for known or putative proteins not containing arginine or lysine. Eleven of the sequences found code for proteins whose functions are well known and important in the biochemistry of modern microbial life: lysine biosynthesis protein LysW, arginine cluster proteins, copper ion binding proteins, bacterial flagellar proteins, and PE or PPE family proteins. These data indicate that the lack of basic amino acids does not prevent peptides or proteins from serving useful structural and biochemical functions. However, as would be predicted from fundamental physicochemical principles, we see no fossil evidence of prebiotic BAA(-) peptide sequences capable of interacting directly with nucleic acids.  相似文献   

15.
Carotenoid analysis of halophilic archaea by resonance Raman spectroscopy   总被引:1,自引:0,他引:1  
Recently, halite and sulfate evaporate rocks have been discovered on Mars by the NASA rovers, Spirit and Opportunity. It is reasonable to propose that halophilic microorganisms could have potentially flourished in these settings. If so, biomolecules found in microorganisms adapted to high salinity and basic pH environments on Earth may be reliable biomarkers for detecting life on Mars. Therefore, we investigated the potential of Resonance Raman (RR) spectroscopy to detect biomarkers derived from microorganisms adapted to hypersaline environments. RR spectra were acquired using 488.0 and 514.5 nm excitation from a variety of halophilic archaea, including Halobacterium salinarum NRC-1, Halococcus morrhuae, and Natrinema pallidum. It was clearly demonstrated that RR spectra enhance the chromophore carotenoid molecules in the cell membrane with respect to the various protein and lipid cellular components. RR spectra acquired from all halophilic archaea investigated contained major features at approximately 1000, 1152, and 1505 cm(-1). The bands at 1505 cm(-1) and 1152 cm(-1) are due to in-phase C=C (nu(1) ) and C-C stretching ( nu(2) ) vibrations of the polyene chain in carotenoids. Additionally, in-plane rocking modes of CH(3) groups attached to the polyene chain coupled with C-C bonds occur in the 1000 cm(-1) region. We also investigated the RR spectral differences between bacterioruberin and bacteriorhodopsin as another potential biomarker for hypersaline environments. By comparison, the RR spectrum acquired from bacteriorhodopsin is much more complex and contains modes that can be divided into four groups: the C=C stretches (1600-1500 cm(-1)), the CCH in-plane rocks (1400-1250 cm(-1)), the C-C stretches (1250-1100 cm(-1)), and the hydrogen out-of-plane wags (1000-700 cm(-1)). RR spectroscopy was shown to be a useful tool for the analysis and remote in situ detection of carotenoids from halophilic archaea without the need for large sample sizes and complicated extractions, which are required by analytical techniques such as high performance liquid chromatography and mass spectrometry.  相似文献   

16.
Small solar system bodies such as asteroids and comets are of significant interest for both scientific and human exploration missions. However, their orbital environments are among the most highly perturbed and extreme environments found in the solar system. Uncontrolled trajectories are highly unstable in general and may either impact or escape in timespans of hours to days. Even with active control, the chaotic nature of motion about these bodies can effectively randomize a trajectory within a few orbits, creating fundamental difficulties for the navigation of spacecraft in these environments. In response to these challenges our research has identified robust and stable orbit solutions and mission designs across the whole range of small body sizes and spin states that are of interest for scientific and human exploration. This talk will describe the challenges of exploring small bodies and present the practical solutions that have been discovered which enable their exploration across the range of small body types and sizes.  相似文献   

17.
Quantitative habitability   总被引:1,自引:0,他引:1  
Shock EL  Holland ME 《Astrobiology》2007,7(6):839-851
A framework is proposed for a quantitative approach to studying habitability. Considerations of environmental supply and organismal demand of energy lead to the conclusions that power units are most appropriate and that the units for habitability become watts per organism. Extreme and plush environments are revealed to be on a habitability continuum, and extreme environments can be quantified as those where power supply only barely exceeds demand. Strategies for laboratory and field experiments are outlined that would quantify power supplies, power demands, and habitability. An example involving a comparison of various metabolisms pursued by halophiles is shown to be well on the way to a quantitative habitability analysis.  相似文献   

18.
航天器运输用包装箱被动保温性能分析   总被引:1,自引:0,他引:1  
苏新明  付仕明  裴一飞 《宇航学报》2012,33(9):1334-1340
对某航天器及其包装箱整体建模,采用FLUENT软件对模型进行流动与传热耦合计算。采用瞬态求解分别计算了三种工况下包装箱的被动保温性能。通过求解发现,对于两种极端工况,包装箱被动保温4小时后能够保证箱内温度维持在0℃~40℃的要求范围内,说明包装箱的保温性能满足要求,能够在运输过程中对航天器进行有效地保护;对于第三种工况的求解,发现该包装箱在极冷和极热环境下,被动保温所能维持的时间均不会超过12个小时。  相似文献   

19.
In recent years, Bacteria and Archaea have been discovered living in practically every conceivable terrestrial environment, including some previously thought to be too extreme for survival. Exploration of our solar system has revealed a number of extraterrestrial bodies that harbor environments analogous to many of the terrestrial environments in which extremophiles flourish. The recent discovery of more than 105 extrasolar planets suggests that planetary systems are quite common. These three findings have led some to speculate that life is therefore common in the universe, as life as we know it can seemingly survive almost anywhere there is liquid water. It is suggested here that while environments capable of supporting life may be common, this does not in itself support the notion that life is common in the universe. Given that interplanetary transfer of life may be unlikely, the actual origin of life may require specific environmental and geological conditions that may be much less common than the mere existence of liquid water.  相似文献   

20.
ESA/ESTEC的空间环境试验能力研究   总被引:2,自引:0,他引:2  
这里的空间环境主要指电子、质子、离子、太阳紫外、原子氧、碎片、极端温度、污染等环境,这些环境在航天器中产生总剂量效应、单粒子效应、充放电效应等各种有害效应,甚至会引发航天器故障与异常。鉴于空间环境不利影响的严重性和复杂性,欧洲空间局(ESA)在欧洲空间技术研究中心(ESTEC)的产品保证与安全部门建立了空间环境试验室,目的为ESA航天器的空间环境防护提供先进的试验验证手段。文章介绍ESA/ESTEC的空间环境地面试验能力,包括空间环境模拟设备、测试仪器及其试验相关的标准;介绍ESTEC航天器研制组织体系及其空间环境试验室所在的产品保证与安全部门的职能和作用,分析研究了这些部门及空间环境试验室对ESA航天器质量、可靠性、安全性的基础保证作用;最后就完善我国空间环境试验能力提出建议。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号