首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
硼化物键合剂在硝胺推进剂中的应用研究   总被引:1,自引:0,他引:1  
本文根据单轴反复拉伸破坏能,研究了两种硼化物键合剂在RDX/HTPB推进剂和RDX/AP/HTPB推进剂中的作用效果,还分析了它们对推进剂工艺性能、对RDX颗粒与粘合剂基体界面粘结效能的影响,结果表明,这两种键合剂能明显改善硝胺复合推进剂宽广温度范围内的力学性能,并使推进剂具有较好的工艺性能。  相似文献   

2.
总结了提高硝胺类复合固体推进剂力学性能的方法,认为键合剂的使用是提高推进剂力学性能经济、高效、便捷的技术途径,分析了键合剂的作用机理及其功能特点,综述了硝胺类复合固体推进剂用键合剂的种类及其研究进展,认为多功能聚合物键合剂("一剂多能")是键合剂的一个发展方向,应根据硝胺填料表面特性及不同粘合剂结构特点,通过分子设计,制备出适用于不同粘合剂-硝胺体系推进剂的通用键合剂,针对通用键合剂的设计提出了几点建议。  相似文献   

3.
在以端羟基预聚物与异氰酸酯和硝化纤维素(NC)为基的圆柱型药粒(BG)所组成的复合双基(CDB)推进剂中,粘合剂与异氰酸酯的当量比对于推进剂的力学性能影响很大。虽然作为改善力学性能的粘合剂含量增加会对双基推进剂的平台特征有些不良影响,但是当粘合剂含量控制在一定范围内,则可获得压力指数低于0.2以下的低压力指数CDB推进剂。之外,由于硝胺对CDB推进剂的压力指数影响较小,所以有可能使CDB推进剂实现高比冲化。  相似文献   

4.
为提高叠氮高能推进剂(BAMO-THF/A3/AP/HMX/Al)力学性能,避免脱湿现象,对中性聚合物类键合剂(NPBA)在推进剂中添加应用工艺进行了研究。基于NPBA对在硝胺表面包覆效果和键合剂反应速度的影响机理,通过实验研究了键合剂加入方式、溶剂用量、捏合温度和捏合时间对键合剂键合效果的影响。结果发现:为使键合剂均匀分散至捏合体系中,增大与硝胺的接触,需将键合剂溶于溶剂再添加至药浆中,捏合过程中通过抽真空抽除溶剂;较高的捏合温度利于提高药浆流平性,加快键合剂与固化剂的反应速度,改善不同组分间的相容性,但温度选择时应考虑生产设备的限制;延长捏合时间可使键合剂充分包覆硝胺,提高推进剂力学性能。研究确定的NPBA用于叠氮高能推进剂的最佳工艺条件为:采用溶剂RJ溶解NPBA,RJ与NPBA质量比为5∶1;在温度60℃下捏合60~90min,捏合后抽真空20min。采用该工艺时,出料的工艺性能良好,经固化制得的推进剂方坯力学性满足使用要求。  相似文献   

5.
选用了3种不同规格的HTPB粘合剂、3种高性能键合剂和3种不同粒度的球形铝粉来研究以TDI为固化剂的高固体含量(88%)的RDX/AP/Al/HTPB丁羟推进剂的力学和工艺性能,研究结果表明,使用高分子量、低粘度的HTPB粘合剂和3^#高性能键合剂能明显改善RDX/AP/Al/HTPB推进剂宽温度范围内的力学性能和工艺性能;采用细粒度球铝粉能使工艺性能得到改善,而对力学性能影响不大。  相似文献   

6.
本试验主要是用卡片间隙测试法测硝胺复合推进剂的冲击起爆感度。文章还研究了HMX含量、HMX粒度与推进剂起爆所必须的临界冲击波压力、临界直径之间的关系,以及推进剂的空隙度对起爆感度的影响。从这些实验结果来看,可以认为向硝胺推进剂中添加的HMX量若在10%左右,那么在安全性方面是没有问题的。  相似文献   

7.
日本于1957年成功地发射了一枚小型探空火箭 K-3,这是日本第一枚复合固体推进剂火箭。从那时候以来,对复合固体推进剂进行了许多方面的研制。所研制的聚酯、聚硫、聚氨基甲酸酯以及聚丁二烯聚合物,均被广泛地作为探空火箭或卫星运载火箭的复合固体推进剂的粘合剂基体。日本研制的端羧基聚丁二烯(CTPB),在工艺性能、力学性能以及燃烧性能方面,均比其它聚合物好。这种聚合物(JSR·CTPB S-21)已经应用到日本典型的宇航飞行器中,例如 M-3 A、TT-500A、M-13等。另一方面 HTPB 最近作为一种新的优良的聚丁二烯粘合剂材料已引起人们极大的兴趣。它已用于目前正在研制的一些火箭发动机中。通过我们的共同努力,新的 HTPB 聚合物已经进入实用阶段。正在研制的高性能的远地点发动机(ABM)就使用这种 HTPB 推进剂。  相似文献   

8.
详细介绍西欧各国研制固体火箭推进剂的情况及其进展.对双基推进剂,包括浇注双基推进剂、压伸双基推进剂、复合改性浇注双基推进剂和复合推进剂,以及一些粘合剂的特性和发展分别作了叙述.探讨在固体推进剂中加入硼粉后性能的改进以及所带来的问题.今后固体推进剂发展的重点将是:提高总固体含量,进一步提高燃速,改进药柱的力学性能,降低温度敏感系数,以及降低推进剂成本.  相似文献   

9.
复合固体推进剂的相(微相)分离   总被引:4,自引:0,他引:4  
复合固体推进剂中存在两种形式的相分离,一种是由于粘合剂体系的混溶性差或是由于粘中合剂和增塑剂的结晶及凝胶作用造成的;另一种为聚氨酯粘合剂基体中软硬段的微相分离,两种相分离可以同时发生,但其对复合固体推进剂性能的影响不同,粘合剂与增塑剂的相分离有可能导臻推进剂性能的严重下降,而适宜的微相分离则能显著提高推进剂的力学性能,可以采用微相分离促进剂、离子化和形成互穿聚合物网络的方法来改善推进剂的微相分离,提高其务学性能。  相似文献   

10.
在丁羟/铝粉/高氯酸铵组成的三组元推进剂体系中,通过药浆流变性测试、动态力学分析(DMA)、单向拉伸性能、凝胶分数和相对交联密度的测定,研究了一些功能组分如氮丙啶类化合物MAPO、醇胺络合物TEA·BF3、胺类化合物H对推进剂工艺性能和力学性能的影响.结果表明,MAPO可以降低药浆屈服值和表观粘度,改善工艺性能,显著增加最大抗拉强度,但对最大伸长率无影响;TEA·BF3大幅度增加药浆屈服值,使工艺性能变差,一定程度上提高最大抗拉强度和发挥熵弹性而增加最大伸长率,H可以显著改善推进剂工艺性能和增加最大伸长率.文中还对功能组分在推进剂中的作用机理进行了分析探讨.  相似文献   

11.
本文讨论了从推进剂各组分的实测冲击H值(Shock Hugoniot)来计算复合推进剂的冲击H值。HMX炸药—聚氨酯粘合剂复合推进剂的冲击H值计算值与实验值极其吻合。推进剂及其组分的冲击均相温度的数值计算是利用Walsh—Christian方程式,但是包括了温度对热容的影响。粘合剂的冲击温度要比炸药的冲击温度高。讨论了复合固体推进剂受震动或冲击时控制能量分布的因素;指出高聚物粘合剂加入到炸药内是如何降低冲击温度,从而相应地降低了推进剂的震动或冲击发火感度。  相似文献   

12.
热塑性聚氨酯复合固体推进剂   总被引:3,自引:0,他引:3  
何吉宇  谭惠民 《宇航学报》2008,29(1):252-254
采用与硝化甘油(NG)具有良好相溶性的热塑性聚氨酯弹性体(TPUE)为粘合剂制备了热塑性复合固体推进剂。对热塑性复合固体推进剂的能量性能、力学性能、燃烧性能进行了研究分析。结果表明制备的热塑性复合固体推进剂具有高的理论比冲,可高于265s,具有优良燃烧性能及良好力学性能。  相似文献   

13.
复合固体推进剂燃烧时,粘合剂和氧化剂的分解起着非常重要的作用。复合推进剂配方中,过氯酸铵(AP)是目前实际使用的氧化剂。根据应用于推进剂的情况,收集综述了粘合剂和 AP 分解的有关资料。本综述可以用来了解推进剂的燃烧机理。  相似文献   

14.
含能热塑性聚氨酯推进剂的能量计算与分析   总被引:2,自引:0,他引:2  
采用最小自由能法,在标准条件(pc/p0=70∶1)下,比较了用不同软硬段结构的含能热塑性聚氨酯弹性体(ET-PU)作粘合剂的复合推进剂的能量特性,从要获得较高能量水平的观点,排列出了几种ETPU选择的先后次序;计算了含ETPU的各类推进剂的能量特性参数,探讨了ETPU对硝酸酯增塑的复合推进剂和硝胺改性双基推进剂的能量特性的影响规律。结果表明,选用不同ETPU的复合推进剂配方相互间在能量特性上存在着差别,但这种差别并不十分显著,以GAP为软段、TDI为硬段的ETPU,更有利于配方获得较高的能量水平;硝酸酯增塑的ETPU推进剂的理论能量水平高于丁羟推进剂,随增塑比逐渐增大,推进剂的最大理论比冲随之增大,固含量逐步降低;少量ETPU的加入,对硝胺改性双基推进剂的能量特性影响不大,增加Al和RDX含量,更有利于提高含ETPU的硝胺改性双基推进剂的能量水平。  相似文献   

15.
对端羧基聚丁二烯丙烯睛(CTBN)液体共聚物为粘合剂的极低燃速的复合固定推进剂进行了论证。本计划的目的是,研制一种用于燃气发生器的(StarterCartridge)、压力在70公斤/厘米~2(100磅/英寸~2)下,燃速指标为1.78毫米/秒(0.070英寸/秒)的推进剂。选择了双环氧交链系统的低丙烯睛 CTBN 粘合剂,因为它的老化性能和工艺性能较之一般的粘合剂材料优越。在改进的 MK6气体发生器装置中,用浇注单孔圆柱形的、端面包复和外圆柱面包复的推进剂药柱进行弹道性能评定。用50%双级配的过氯酸胺、30%CTBN 粘合剂和20%装填密度高的硝基胍组成的推进剂配方成功地满足了设计要求,在要求的压力与温度25℃(77°F)下,达到了1.70毫米/秒(0.067英寸/秒)的燃速指标。当压力在35公斤/厘米~2(500磅/英寸~2)到70公斤/厘米~2(1000磅/英寸~2)范围内,温度在-54℃和74℃之间时,所测得的温度敏感系数π=0.36%/℃(0.20%/°F)。通过初步的力学性能和物理性能试验表明,此种类型的药柱设计在工作条件下,是合格的。因此,这种推进剂用于各种低燃速的场合似乎是有吸引力的。  相似文献   

16.
文章研究了新型固化催化剂CSH-01对高燃速HTPB-IPDI推进剂力学性能、工艺性能、高温加速老化性能及推进剂/衬层界面粘接性能的影响。结果表明,添加0.04%CSH-01的固体推进剂,在固化时间不变的情况下可将推进剂固化温度从70℃降低到50℃;在较低的固化参数下推进剂的力学性能便可以达到较高的水平;固化后的推进剂中的异氰酸酯基团数量变少,减轻了推进剂后固化现象,使推进剂的高温加速老化性能也得到改善;推进剂药浆50℃下保温5 h的粘度为1177.8 Pa·s,可满足推进剂生产对工艺性能的要求;添加CSH-01的高燃速IPDI型HTPB推进剂与衬层中的固化反应速率更匹配,可改善推进剂的界面粘接性能。总之,与TPB相比,CSH-01具有更及时、适中的催化效果,是高燃速HTPBIPDI推进剂较为理想的固化催化剂。  相似文献   

17.
合成了一种新型二茂铁化合物—1,1—双(三甲基硅氧乙基)二茂铁,并研究了这种化合物对AP/HTPB复合推进剂燃烧性能、力学性能以及工艺性能的影响。实验结果表明,这种化合物具有改善推进剂燃烧性能和力学性能的双重作用。  相似文献   

18.
研究了细粒度AP及工艺助剂PA含量对丁羟高燃速推进剂低温(-40℃)力学性能的影响,结果显示:大量细粒度AP加入高燃速配方中,一方面加剧了单向拉伸过程中填料(主要是细AP)颗粒附近的应力集中;另一方面降低了填料/粘合剂间的粘结强度,是造成低温力学性能偏低的主要原因.由于工艺助剂PA极性及刚性,使得它易于富集于填料表面,低温下降低了界面层的柔性,物理作用也极大地束缚了填料附近粘合剂网络的分子运动,因此,它在改善工艺性能的同时,对推进剂低温力学性能有不利影响.  相似文献   

19.
建立了复合推进剂在拉伸应变条件下燃速变化计算模型,并针对所建立方程进行了实验验证。结果表明,所建立模型在拉伸形变为0%~20%情况下与实验结果相符,燃速比与拉伸形变之间服从二次函数关系,燃速随应变增加而增大;复合推进剂的泊松比越小,则燃速比随拉伸应变增长越快;复合推进剂中粘合剂组分越少,应变状态下燃速比变化越显著。复合推进剂在拉伸状态下,粘合剂会出现疏松和裂纹,同时粘合剂和固体颗粒AP之间出现空隙,AP裸露面积增加,进而推进剂燃烧速度更快,燃速比更大。  相似文献   

20.
为进一步提升丁羟推进剂的各项性能,加快丁羟推进剂原材料的低毒化进程,开展了低毒固化剂四甲基苯二亚甲基二异氰酸酯(TMXDI)在丁羟推进剂中的应用研究。通过改进混合工艺及新型固化催化剂的组合应用,解决了低毒固化剂TMXDI在应用过程中出现的工艺性能差、固化温度偏高等技术难题。并初步探索了以TMXDI为固化剂的推进剂的力学、老化、燃烧等性能。研究表明,以TMXDI为固化剂的推进剂力学性能良好,其常温抗拉强度为1.03 MPa时,其最大伸长率可达60%,另外以TMXDI为固化剂的推进剂相比以TDI为固化剂的推进剂还具有更好的工艺性能和老化性能,丁羟推进剂性能得到提升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号