首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The author addresses and summarizes some of the broader issues relating to electric vehicles including legislation, regulation, funding, infrastructure, niche markets, safety, and the near-term need for lead-acid batteries. The impact of low emission requirements is examined. The principle hazards associated with lead-acid batteries and the attendant liability issues are identified. Federal safety requirements are discussed in some detail  相似文献   

2.
Electric vehicles that can't reach trolley wires need batteries. In the early 1900's electric cars disappeared when owners found that replacing the car's worn-out lead-acid battery costs more than a new gasoline-powered car. Most of today's electric cars are still propelled by lead-acid batteries. General Motors in their prototype Impact, for example, used starting-lighting-ignition batteries, which deliver lots of power for demonstrations, but have a life of less than 100 deep discharges. Now promising alternative technology has challenged the world-wide lead miners, refiners, and battery makers into forming a consortium that sponsors research into making better lead-acid batteries. Horizon's new bipolar battery delivered 50 watt-hours per kg (Wh/kg), compared with 20 for ordinary transport-vehicle batteries. The alternatives are delivering from 80 Wh/kg (nickel-metal hydride) up to 200 Wh/kg (zinc-bromine). A Fiat Panda traveled 260 km on a single charge of its zinc-bromine battery. A German 3.5-ton postal truck traveled 300 km with a single charge in its 650-kg (146 Wh/kg) zinc-air battery. Its top speed was 110 km per hour  相似文献   

3.
The following topics are discussed: new batteries for old airplanes; new charge controls for lengthening battery life; fast methods for batteries charging; AC conductance measurement based battery testing; pulse power; bipolar lead-acid batteries vs supercapacitors; Ni electrode cells for spacecraft; worn-out battery disposal; recycling technology; vehicle batteries cost; high energy content batteries; and energy storage for electric utilities  相似文献   

4.
This paper presents the results of cycle life testing F24-V, 15-Ah sealed lead-acid batteries intended for use the B-1B aircraft. Test samples were procured from two different manufacturers and subjected to cycle testing at 33% and 100% depth-of-discharge (DOD). The cycle life at 33% DOD ranged from 500 to 750 cycles. The cycle life at 100% DOD ranged from 160 to 260 cycles  相似文献   

5.
Selective buck-boost equalizer for series battery packs   总被引:1,自引:0,他引:1  
To maximize the capacity and reliability of a series connected battery pack, a new selective equalizer developed from the earlier ramp equalizer is proposed. A set of bipolar junction transistors (BJTs) controlled by a microcontroller is used to route equalization current to the lowest voltage batteries. Since only the lowest voltage batteries are connected to the equalizer, the need for uniform transformer leakage inductance is avoided, and a lower power level can be used since no excess current flows to the other batteries. An equalization experiment has shown that a 37 W selective equalizer had a slightly better effect on a 24-battery pack than a 63 W ramp equalizer  相似文献   

6.
Hybrid systems utilizing a zinc-air battery or a Proton Exchange Membrane Fuel Cell (PEMFC) as the high energy density component coupled with a rechargeable battery (lead-acid or nickel-metal hydride) or electrochemical capacitor (EC) bank as the high power density component were tested under a high-pulse application load, Land Warrior (LW). The hybrid power sources successfully operated the LW cyclic load beyond the capabilities of the specific single chemistry systems studied. The zinc-air battery hybrids allowed approximately triple the operation time of PEMFC hybrids. The best performing hybrid system was the zinc-air battery/lead-acid battery. It provided the greatest operating voltage and longest operating time  相似文献   

7.
Two mathematical models describing processes that occur in a lead-acid battery are presented. One model is used to evaluate the geometry of the current collecting grids for minimum ohmic losses; the other is useful for evaluating cell design parameters such as electrode paste specifications and separator characteristics. The formulation of the models is briefly discussed, and they are demonstrated with examples. The grid geometry model is used to compare a rectilinear grid pattern with an intricate pattern having nonrectilinear elements. The comparison is based on the initial voltage loss of the cell as predicted by the model. The cell chemistry model is used to examine the effects of the positive and negative plate thicknesses on the DIN (German test standard) runtime  相似文献   

8.
A lithium ion battery charger has been developed for four and eight cell batteries or multiples thereof. This charger has the advantage over those using commercial lithium ion charging chips in that the individual cells are allowed to be taper charged at their upper charging voltage rather than be cutoff when all cells of the string have reached the upper charging voltage limit. Since 30-60% of the capacity of lithium ion cells may be restored during the taper charge, this charger has a distinct benefit of fully charging lithium ion batteries by restoring all of the available capacity to all of its cells  相似文献   

9.
State-of-charge indication for a secondary battery is becoming increasingly important for battery-operated electronics. Consumers are demanding fast charging times, increased battery lifetime, and fuel gauge capabilities. All of these demands require that the state of charge within a battery be known. One of the simplest methods employed to determine state of charge is to monitor the voltage of the battery. However, this method alone is not a good indicator of battery energy, since both NiMH and NiCd batteries have voltage-versus-energy curves that are essentially flat. This paper presents a more effective method of determining the state of charge in secondary cell batteries. A NiMH battery is used as our test vehicle, since it is one of the more difficult batteries to determine state of charge. This method monitors the battery's temperature, voltage, and discharge/charge rate. A microcontroller then manipulates the information, using look-up tables to determine the state of charge. Also, by modifying the look-up tables, this technique can be employed in many other battery technologies and is not limited to NiMH  相似文献   

10.
The self-discharge losses in several lithium-ion cell designs have been measured by three different methods. The losses are separated into time-dependent and state-of-charge dependent contributions. For most cycling conditions, the time-dependent self-discharge losses are dominant; however, after several months of stand on open circuit or float charge, the state-of-charge dependent losses become significant. The self-discharge rate has been found to not increase monotonically with state-of-charge, but to drop somewhat at intermediate states of charge. The implications of these measurements for maintaining balanced cell capacities in batteries and establishing optimum storage voltage levels for batteries are discussed.  相似文献   

11.
A stepped sinewave dc/ac inverter was analyzed for an inductive load with respect to load current and voltage, harmonics, power factor, and efficiency. This special inverter of high efficiency and low harmonic content is constructed by synthesizing the sinusoidal output by discrete voltage sources, such as storage batteries, solar cell, etc., with electronic switching of the sources at specific time intervals. The switching times are determined for the condition of minimum distortion of the synthesized wave. A 50 W inverter was built and tested to demonstrate this approach.  相似文献   

12.
Electro Energy Inc. (EEI) is developing high power, long life, bipolar nickel-metal hydride batteries for aerospace applications. Bipolar nickel-metal hydride designs allow for high energy and high power designs with a 25 percent reduction in both weight and volume as compared to prismatic and/or cylindrical Ni-MH designs. Utilizing a sealed wafer cell design EEI has demonstrated a 1.2 kW/kg power capability. Prototype designs have achieved 70 Wh/kg. Designs studies show 80 Wh/kg are achievable with EEI's state-of-the-art technology. The sealed wafer cell is the building block for EEI's high power and high voltage bipolar batteries making the assembly easy and significantly lower in cost. Satellite and aircraft batteries are being developed which provide high power and long life. Sealed cells now show excellent rate capability and life. Cells tested in a low earth orbit (LEO) cycle have reached 9000 cycles and continue on test. High power, bipolar battery designs are ideal in applications where using conventional aerospace battery technology would require excessive capacity; weight and volume, thereby reducing usable payload on the vehicle  相似文献   

13.
The introduction of a 36V battery along side of the 12V battery will enhance starting reliability, but it also creates new risks and, therefore, a strategy for jump start is needed. This paper discusses the issues that must be addressed with respect to charging and jump starting the batteries in the 42V/14V dual voltage systems  相似文献   

14.
Production Li-ion batteries include hardware and software safety protection. The hardware protection includes PTC (positive temperature coefficient) thermistor switch, electrical circuit disconnect and rupture vent. The software protection involves a charging algorithm (charging to ultimate voltage), which is used with internal electrical circuitry (cell voltage control and equalization circuit). This paper discusses a specific charging algorithm and additional software protection features associated with hard, soft and chemical shunt recognition  相似文献   

15.
A summary of the Hubble Space Telescope (HST) nickel-hydrogen (NiH/sub 2/) battery performance from launch to the present. Over the life of HST vehicle configuration, charge system degradation and failures, together with thermal design limitations, have had a significant effect on the capacity of HST batteries. Changes made to the charge system configuration to protect against power system failures and to maintain battery thermal stability resulted in undercharging of the batteries. This undercharging resulted in decreased usable battery capacity as well as battery cell voltage/capacity divergence. This cell divergence was made evident during on-orbit battery capacity measurements by a relatively shallow slope of the discharge curve following the discharge knee. Early efforts to improve battery performance have been successful. On-orbit capacity measurement data indicates increases in the usable battery capacity of all six batteries as well as improvements in the battery cell voltage/capacity divergence. Additional measures have been implemented to improve battery performance, however, failures within the HST Power Control Unit (PCU) have prevented verification of battery status.  相似文献   

16.
While Ovonic NiMH batteries are already in high volume commercial production for portable applications, advances in materials technology have enabled performance improvements in specific energy (100 Wh/kg), specific power (600-1000 W/kg), high temperature operation, charge retention, and voltage stability. Concurrent with technology advances, Ovonic NiMH batteries have established performance and commercial milestones in electric vehicles, hybrid electric vehicles, as well as scooter, motorcycle and bicycle applications. As important as these advances, significant manufacturing cost reductions have also occurred which allow continued growth of NiMH technology. In this paper, advances in performance, applications and cost reduction are discussed with particular emphasis on the improved proprietary metal hydride and nickel hydroxide materials that make such advances possible  相似文献   

17.
This investigation consisted of several tests of specially fabricated nickel-cadmium batteries having circular disk-type electrodes. These batteries were evaluated as filter elements between a constant current power supply and a 5 Hz pulsed load demanding approximately twice the power supply current during the load on a portion of the cycle. Short tests lasting 104 cycles were conducted at up to a 21 C rate and an equivalent energy density of over 40 J/Ib. In addition, two batteries were subjected to 10h dischar cycles, one at a 6.5 C rate and the other at a 13 C rate. Assuming an electrode-to-battery weight ratio of 0.5, these tests represent an energy density of about 7 and 14 J/Ib, respectively. Energy density, efficiency, capacitance, average voltage, and available capacity were tracked during these tests. After 10y capacity degradation was negligible for one battery and about 20 percent for the other. Cadmium electrode failure may be the factor limiting lifetime at extremely low depth of discharge cycling. The output was examined and a simple equivalent circuit was proposed.  相似文献   

18.
Industrial battery market segments generally fall into two major categories--traction batteries, also called motive power batteries; and stationary batteries, also referred to as standby power batteries. The major industrial battery subcategories are discussed. Industrial trucks and rail and mine vehicles represent two major subcategories of motive power batteries. Industrial trucks include forklifts, automated guided vehicles (AGVs), various types of towing vehicles, floor cleaning equipment and so forth. Battery-powered rail and mine vehicles are used in mines where gas is present that could be ignited by spark ignition engines. Locomotive starting batteries and railcar emergency power batteries are also included in the second subcategory. The distinction is beginning to blur between valve-regulated industrial batteries and golf cart or marine batteries. Both industrial and SLI(starting/lighting/ignition)-derivative batteries are competing for markets in the future. The future trends in industrial battery production in Japan, USA and Europe are discussed  相似文献   

19.
To avoid the numerical complexities of the battery discharge law of electric-powered rotorcrafts,this study uses the Kriging method to model the discharge characteristics of Li-Po batteries under standard conditions.A linear current compensation term and an ambient temperature compensation term based on radial basis functions are then applied to the trained Kriging model,leading to the complete discharged capacity-terminal voltage model.Using an orthogonal experimental design and a sequential method,the coefficients of the current and ambient temperature compensation terms are determined through robust optimization.An endurance calculation model for electric-powered rotorcrafts is then established,based on the battery discharge model,through numerical integration.Laboratory tests show that the maximum relative error of the proposed discharged capacity-terminal voltage model at detection points is 0.0086,and that of the rotorcraft endurance calculation model is 0.0195,thus verifying their accuracy.A flight test further demonstrates the applicability of the proposed endurance model to general electric-powered rotorcrafts.  相似文献   

20.
A new approach to the design of lead acid batteries has been developed based on the use of very thin lead foil current collectors. The basic cell construction and the performance characteristics for the new cell are described. Spiral wrap cells based on this electrode concept exhibit extremely high power output with excellent capacity maintenance. Additionally, these cells exhibit very flat voltage at all currents, and are capable of very rapid recharge. Applications for this high power technology cover a broad spectrum such as portable power tools, UPS systems, electrically heated catalytic converters, military pulse power applications and electric and hybrid vehicles  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号