首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
In this introductory presentation, material is categorized according to our state of knowledge: What do we know, what do we think we know but don’t know certainly, and what do we not know but often describe it as if it were a well-established fact about comets, their nuclei, their composition, and processes within comets and their nuclei. The material is presented not with the intend to criticize laboratory work simulating condition in comet nuclei, or observers analyzing their observations, nor modelers using data from both these sources to improve our understanding and make predictions. The intent is to provoke discussion and dialog between these groups to avoid overstating the results. What is a Comet? A comet is a diffuse appearing celestial phenomenon moving in an orbit about the Sun. The central body, the nucleus, is composed of ice and dust. It is the source of all cometary activity, including comae and tails. We distinguish between molecular (including atoms and ions) and dust comae. At heliocentric distances of about 1 AU and less, the hydrogen coma typically has dimensions larger than the Sun. The tails are composed of dust, neutral atoms and molecules, and plasma.  相似文献   

2.
Analysis of the polarization of light scattered by cometary particles reveals similarities amongst the phase curves, together with some clear differences: i) comets with a strong silicate emission feature present a high maximum in polarization, ii) the polarization is always slightly lower than the average in inner comae and stronger in jet-like structures. These results are in excellent agreement with the Greenberg model of dust particles built up of fluffy aggregates of much smaller grains. Also, they suggest the existence of different regions of formation, and of different stages of evolution for the scattering particles inside a given cometary coma. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
We discuss the possibility that CI and CM carbonaceous chondrites are fragments of extinct cometary nuclei. Theoretical and observational work suggests that comets evolve into asteroids, and several extinct cometary nuclei are now suspected to be among the near Earth object population. This population is the most likely source of meteorites and consequently, we may expect that some meteorites are from extinct comets in this population. The mineralogy and chemistry of CI and CM chondrites is consistent with the view that they originate from asteroidal objects of carbonaceous spectral classes, and these objects in turn may have a cometary origin. We do not suggest that CI or CM chondrites are directly delivered by active comets during perihelion passage or that these chondrites come from cometary debris in meteor streams. Instead, we summarize arguments suggesting that CI and CM chondrites represent fragments of cometary nuclei which evolved into near Earth asteroids after losing their volatiles. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
A major objective of the workshop was to learn about the chemical composition, physical structure, and thermodynamic conditions of the outer parts of the solar nebula where comets formed. Here we sum up what we have learned from years of research about the molecular constituents of comet comae primarily from in situ measurements of Comet 1P/Halley and remote sensing of Comets 1P/Halley, Hale-Bopp (C/1995 O1), and Hyakutake (C/1996 B2). These three bright comets are presumably captured Oort cloud comets. We summarize the analyses of these data to predict the composition of comet nuclei and project them further to the composition, structure, and thermodynamic conditions in the nebula. Near-future comet missions are directed toward less active short-period Jupiter-family comets. Thus, future analyses will afford a better understanding of the diversity of these two major groups of comets and their respective regions of origin in the solar or presolar nebula. We conclude with recommendations for determining critical data needed to aid in further analyses. Results of the workshop provide new guidelines and constraints for modeling the solar nebula. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Silicates in comets appear to be a mix of high-temperature crystalline enstatite and forsterite plus glassy or amorphous grains that formed at lower temperatures. The mineral identifications from the 10 and 20 μm cometary spectra are consistent with the composition of anhydrous chondritic aggregate IDPs. The origin of the cometary silicates remains puzzling. While the evidence from the IDPs points to a pre-solar origin of both crystalline and glassy components, the signatures of crystalline silicates appear in the spectra of young stellar objects only at a late evolutionary stage, when comets are the likely source of the dust. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
There is significant progress in the observations, theory, and understanding of the x-ray and EUV emissions from comets since their discovery in 1996. That discovery was so puzzling because comets appear to be more efficient emitters of x-rays than the Moon by a factor of 80 000. The detected emissions are general properties of comets and have been currently detected and analyzed in thirteen comets from five orbiting observatories. The observational studies before 2000 were based on x-ray cameras and low resolution (E/δE ≈ 1.5-3) instruments and focused on the morphology of xrays, their correlations with gas and dust productions in comets and with the solar x-rays and the solar wind. Even those observations made it possible to choose uniquely charge exchange between the solar wind heavy ions and cometary neutrals as the main excitation process. The recently published spectra are of much better quality and result in the identification of the emissions of the multiply charged ions of O, C, Ne, Mg, and Si which are brought to comets by the solar wind. The observed spectra have been used to study the solar wind composition and its variations. Theoretical analyses of x-ray and EUV photon excitation in comets by charge exchange, scattering of the solar photons by attogram dust particles, energetic electron impact and bremsstrahlung, collisions between cometary and interplanetary dust, and solar x-ray scattering and fluorescence in comets have been made. These analyses confirm charge exchange as the main excitation mechanism, which is responsible for more than 90% of the observed emission, while each of the other processes is limited to a few percent or less. The theory of charge exchange and different methods of calculation for charge exchange are considered. Laboratory studies of charge exchange relevant to the conditions in comets are reviewed. Total and state-selective cross sections of charge exchange measured in the laboratory are tabulated. Simulations of synthetic spectra of charge exchange in comets are discussed. X-ray and EUV emissions from comets are related to different disciplines and fields such as cometary physics, fundamental physics, x-rays spectroscopy, and space physics.This revised version was published online in July 2005 with a corrected cover date.  相似文献   

7.
Tracing measured compositions of comets to their origins continues to be of keen interest to cometary scientists and to dynamical modelers of Solar System formation and evolution. This requires building a taxonomy of comets from both present-day dynamical reservoirs: the Kuiper Belt (hereafter KB), sampled through observation of ecliptic comets (primarily Jupiter Family comets, or JFCs), and the Oort cloud (OC), represented observationally by the long-period comets and by Halley Family comets (HFCs). Because of their short orbital periods, JFCs are subjected to more frequent exposure to solar radiation compared with OC comets. The recent apparitions of the JFCs 9P/Tempel 1 and 73P/Schwassmann-Wachmann 3 permitted detailed observations of material issuing from below their surfaces—these comets added significantly to the compositional database on this dynamical class, which is under-represented in studies of cometary parent volatiles. This chapter reviews the latest techniques developed for analysis of high-resolution spectral observations from ~2–5 μm, and compares measured abundances of native ices among comets. While no clear compositional delineation can be drawn along dynamical lines, interesting comparisons can be made. The sub-surface composition of comet 9P, as revealed by the Deep Impact ejecta, was similar to the majority of OC comets studied. Meanwhile, 73P was depleted in all native ices except HCN, similar to the disintegrated OC comet C/1999 S4 (LINEAR). These results suggest that 73P may have formed in the inner giant planets’ region while 9P formed farther out or, alternatively, that both JFCs formed farther from the Sun but with 73P forming later in time.  相似文献   

8.
Cometary Dust     
This review presents our understanding of cometary dust at the end of 2017. For decades, insight about the dust ejected by nuclei of comets had stemmed from remote observations from Earth or Earth’s orbit, and from flybys, including the samples of dust returned to Earth for laboratory studies by the Stardust return capsule. The long-duration Rosetta mission has recently provided a huge and unique amount of data, obtained using numerous instruments, including innovative dust instruments, over a wide range of distances from the Sun and from the nucleus. The diverse approaches available to study dust in comets, together with the related theoretical and experimental studies, provide evidence of the composition and physical properties of dust particles, e.g., the presence of a large fraction of carbon in macromolecules, and of aggregates on a wide range of scales. The results have opened vivid discussions on the variety of dust-release processes and on the diversity of dust properties in comets, as well as on the formation of cometary dust, and on its presence in the near-Earth interplanetary medium. These discussions stress the significance of future explorations as a way to decipher the formation and evolution of our Solar System.  相似文献   

9.
There is significant progress in the observations, theory, and understanding of the x-ray and EUV emissions from comets since their discovery in 1996. That discovery was so puzzling because comets appear to be more efficient emitters of x-rays than the Moon by a factor of 80000. The detected emissions are general properties of comets and have been currently detected and analyzed in thirteen comets from five orbiting observatories. The observational studies before 2000 were based on x-ray cameras and low resolution (E/E1.5–3) instruments and focused on the morphology of x-rays, their correlations with gas and dust productions in comets and with the solar x-rays and the solar wind. Even those observations made it possible to choose uniquely charge exchange between the solar wind heavy ions and cometary neutrals as the main excitation process. The recently published spectra are of much better quality and result in the identification of the emissions of the multiply charged ions of O, C, Ne, Mg, and Si which are brought to comets by the solar wind. The observed spectra have been used to study the solar wind composition and its variations. Theoretical analyses of x-ray and EUV photon excitation in comets by charge exchange, scattering of the solar photons by attogram dust particles, energetic electron impact and bremsstrahlung, collisions between cometary and interplanetary dust, and solar x-ray scattering and fluorescence in comets have been made. These analyses confirm charge exchange as the main excitation mechanism, which is responsible for more than 90% of the observed emission, while each of the other processes is limited to a few percent or less. The theory of charge exchange and different methods of calculation for charge exchange are considered. Laboratory studies of charge exchange relevant to the conditions in comets are reviewed. Total and state-selective cross sections of charge exchange measured in the laboratory are tabulated. Simulations of synthetic spectra of charge exchange in comets are discussed. X-ray and EUV emissions from comets are related to different disciplines and fields such as cometary physics, fundamental physics, x-rays spectroscopy, and space physics.  相似文献   

10.
Altwegg  K.  Balsiger  H.  Geiss  J. 《Space Science Reviews》1999,90(1-2):3-18
The investigation of the volatile material in the coma of comets is a key to understanding the origin of cometary material, the physical and chemical conditions in the early solar system, the process of comet formation, and the changes that comets have undergone during the last 4.6 billion years. So far, in situ investigations of the volatile constituents have been confined to a single comet, namely P/Halley in 1986. Although, the Giotto mission gave only a few hours of data from the coma, it has yielded a surprising amount of new data and has advanced cometary science by a large step. In the present article the most important results of the measurements of the volatile material of Halley's comet are summarized and an overview of the identified molecules is given. Furthermore, a list of identified radicals and unstable molecules is presented for the first time. At least one of the radicals, namely CH2, seems to be present as such in the cometary ice. As an outlook to the future we present a list of open questions concerning cometary volatiles and a short preview on the next generation of mass spectrometers that are being built for the International Rosetta Mission to explore the coma of Comet Wirtanen. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
The planned missions to Comet Halley, which will arrive at the nearest space of the Sun in 1986, have recently revived interest in studying solar wind interaction with comets. Several unsolved problems exist and the most urgent of them are as follows:
  1. The character of the solar wind interaction with comets: bow shocks and contact surface formation near comets; similarities and differences of solar- wind interaction with comets and with Venus. The differences are probably associated with a great extension of neutral atmospheres of comets (due to a practical lack of cometary gravitation) and the ‘loading’ of the solar wind flux by cometary ions during the interaction.
  2. The anomalous ionization in cometary heads.
  3. The problem of the anamalously high accelerations of ions in the plasma tails of comets.
  4. The variability of plasma structures observed in cometary tails.
  相似文献   

12.
Waves and instabilities in dusty space plasmas   总被引:1,自引:0,他引:1  
  相似文献   

13.
Comets are thought to preserve the most pristine material currently present in the solar system, as they are formed by agglomeration of dust particles in the solar nebula, far from the Sun, and their interiors have remained cold. By approaching the Sun, volatile components and dust particles are released forming the cometary coma. During the phase of Heavy Bombardment, 3.8--4 billion years ago, cometary matter was delivered to the Early Earth. Precise knowledge on the physico-chemical composition of comets is crucial to understand the formation of the Solar System, the evolution of Earth and particularly the starting conditions for the origin of life on Earth. Here, we report on the COSAC instrument, part of the ESA cometary mission Rosetta, which is designed to characterize, identify, and quantify volatile cometary compounds, including larger organic molecules, by in situ measurements of surface and subsurface cometary samples. The technical concept of a multi-column enantio-selective gas chromatograph (GC) coupled to a linear reflectron time-of-flight mass-spectrometer instrument is presented together with its realisation under the scientific guidance of the Max-Planck-Institute for Solar System Research in Katlenburg-Lindau, Germany. The instrument's technical data are given; first measurements making use of standard samples are presented. The cometary science community is looking forward to receive fascinating data from COSAC cometary in situ measurements in 2014.  相似文献   

14.
The modern theory of cometary dynamics is based on Oort's hypothesis that the solar system is surrounded by a spherically symmetric cloud of 1011 to 1012 comets extending out to interstellar distances. Dynamical modeling and analysis of cometary motion have confirmed the ability of the Oort hypothesis to explain the observed distribution of energies for the long-period comet orbits. The motion of comets in the Oort cloud is controlled by perturbations from random passing stars, interstellar clouds, and the galactic gravitational field. Additionally, comets which enter the planetary region are perturbed by the major planets and by nongravitational forces resulting from jetting of volatiles on the surfaces of the cometary nuclei. The current Oort cloud is estimated to have a radius of 6 to 8 × 104 AU, and to contain some 2 × 1012 comets with a total mass of 7 to 8 Earth masses. Evidence has begun to accumulate for the existence of a massive inner Oort cloud extending from just beyond the orbit of Neptune to 104 AU or more, with a population up to 100 times that of the outer Oort cloud. This inner cloud may serve as a reservoir to replenish the outer cloud as comets are stripped away by the various perturbers, and may also provide a more efficient source for the short-period comets. Recent suggestions of an unseen solar companion star or a tenth planet orbiting in the inner cloud and causing periodic comet showers on the Earth are likely unfounded. The formation site of the comets in the Oort cloud was likely the extended nebula accretion disc reaching from about 15 to 500 AU from the forming protosun. Comets which escape from the Oort cloud contribute to the flux of interstellar comets, though capture of interstellar comets by the solar system is extremely unlikely. The existence of Oort clouds around other main sequence stars has been suggested by the detection by the IRAS spacecraft of cool dust shells around about 10% of nearby stars.  相似文献   

15.
16.
We review the evidence for the products of interstellar chemistry in volatile cometary matter. We compare the organic inventory of star-forming cores with that measured in various comets and point out the similarities and differences. The conditions necessary to fractionate interstellar molecules in the heavier isotopes of H, C, O and N are summarised and compared to the measured fractionation ratios in cometary ices. We give a list of future measurements that would shed further light on the putative connection between cometary and interstellar molecules.  相似文献   

17.
A brief discussion is given of the physical processes that may lead to a differentiation of the nucleus of short period comets. It is concluded that samples from the near-surface layers of such comets may give us important information on the initial state of cometary organics and refractories. Cometary ices are more likely to be indicators of the recent evolution of the comet.  相似文献   

18.
Comets with a high content of organics and light molecules are expected under cosmic radiation to gain a relatively unreactive crust and less volatile material to some ten metres deep. Interstellar dust impacts act to loosen and turn over 1 cm of the surface. We discuss how far this accords with observations of cometary dust halos and new versus old comets. Two key material properties have emerged from recent studies. Firstly, the source of cometary volatiles is not ice in the sense of material with a single sublimation energy. Secondly, the particulates are not simply mineral dust but include much organic material, some of which undergoes chemical processing and exchanges with the gaseous environment. Consistent with these properties, a coherent crust rather than a mantle of loose grains would build up to cover much of the nucleus of periodic comets. It would consolidate by cooking in the solar radiation, especially at peak temperatures around perihelion. There are two disjoint surface phases: one of volatile material, the other the refractory crust, the former deepening into crater-like hollows over successive apparitions. The transition to non-volatile crust is unstable, subject to competing consolidation and disruption processes, and sensitive to seasonal changes. A comet dims and becomes asteroidal as the inert crust extends over the erosion craters, and may only be rejuvenated via collision with a boulder-sized impactor or perturbation of the orbit to smaller perihelion distance.  相似文献   

19.
The past dozen years have produced a new paradigm with regard to the source regions of comets in the early solar system. It is now widely recognized that the likely source of the Jupiter-family short-period comets (those with Tisserand parameters, T > 2 and periods, P, generally < 20 years) is the Kuiper belt in the ecliptic plane beyond Neptune. In contrast, the source of the Halley-type and long-period comets (those with T < 2 and P > 20 years) appears to be the Oort cloud. However, the comets in the Oort cloud almost certainly originated elsewhere, since accretion is very inefficient at such large heliocentric distances. New dynamical studies now suggest that the source of the Oort cloud comets is the entire giant planets region from Jupiter to Neptune, rather than primarily the Uranus-Neptune region, as previously thought. Some fraction of the Oort cloud population may even be asteroidal bodies formed inside the orbit of Jupiter. These comets and asteroids underwent a complex dynamical random walk among the giant planets before they were ejected to distant orbits in the Oort cloud, with possible interesting consequences for their thermal and collisional histories. Observational evidence for diversity in cometary compositions is limited, at best. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Cometary nuclei consist of ices intermixed with dust grains and are thought to be the least modified solar system bodies remaining from the time of planetary formation. Flyby missions to Comet P/Halley in 1986 showed that cometary dust is extremely rich in organics (∼50% by mass). However, this proportion appears to be variable among different comets. In comparison with the CI-chondritic abundances, the volatile elements H, C, and N are enriched in cometary dust indicating that cometary solid material is more primitive than CI-chondrites. Relative to dust in dense molecular clouds, bulk cometary dust preserves the abundances of C and N, but exhibits depletions in O and H. In most cases, the carbonaceous component of cometary particles can be characterized as a multi-component mixture of carbon phases and organic compounds. Cluster analysis identified a few basic types of compounds, such as elemental carbon, hydrocarbons, polymers of carbon suboxide and of cyanopolyynes. In smaller amounts, polymers of formaldehyde, of hydrogen cyanide and various unsaturated nitriles also are present. These compositionally simple types, probably, are essential "building blocks", which in various combinations give rise to the variety of involatile cometary organics. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号