首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Results of modeling the time behavior of the D st index at the main phase of 93 geomagnetic storms (?250 < D st ≤ ?50 nT) caused by different types of solar wind (SW) streams: magnetic clouds (MC, 10 storms), corotating interaction regions (CIR, 31 storms), the compression region before interplanetary coronal ejections (Sheath before ICME, 21 storms), and “pistons” (Ejecta, 31 storms) are presented. The “Catalog of Large-Scale Solar Wind Phenomena during 1976–2000” (ftp://ftp.iki.rssi.ru/pub/omni/) created on the basis of the OMNI database was the initial data for the analysis. The main phase of magnetic storms is approximated by a linear dependence on the main parameters of the solar wind: integral electric field sumEy, dynamic pressure P d , and fluctuation level sB in IMF. For all types of SW, the main phase of magnetic storms is better modeled by individual values of the approximation coefficients: the correlation coefficient is high and the standard deviation between the modeled and measured values of D st is low. The accuracy of the model in question is higher for storms from MC and is lower by a factor of ~2 for the storms from other types of SW. The version of the model with the approximation coefficients averaged over SW type describes worse variations of the measured D st index: the correlation coefficient is the lowest for the storms caused by MC and the highest for the Sheath- and CIR-induced storms. The model accuracy is the highest for the storms caused by Ejecta and, for the storms caused by Sheath, is a factor of ~1.42 lower. Addition of corrections for the prehistory of the development of the beginning of the main phase of the magnetic storm improves modeling parameters for all types of interplanetary sources of storms: the correlation coefficient varies within the range from r = 0.81 for the storms caused by Ejecta to r = 0.85 for the storms caused by Sheath. The highest accuracy is for the storms caused by MC. It is, by a factor of ~1.5, lower for the Sheath-induced storms.  相似文献   

2.
We investigate the behavior of mean values of the solar wind’s and interplanetary magnetic field’s (IMF) parameters and their absolute and relative variations during the magnetic storms generated by various types of the solar wind. In this paper, which is a continuation of paper [1], we, on the basis of the OMNI data archive for the period of 1976–2000, have analyzed 798 geomagnetic storms with D st ≤ −50 nT and their interplanetary sources: corotating interaction regions CIR, compression regions Sheath before the interplanetary CMEs; magnetic clouds MC; “Pistons” Ejecta, and an uncertain type of a source. For the analysis the double superposed epoch analysis method was used, in which the instants of the magnetic storm onset and the minimum of the D st index were taken as reference times. It is shown that the set of interplanetary sources of magnetic storms can be sub-divided into two basic groups according to their slowly and fast varying characteristics: (1) ICME (MC and Ejecta) and (2) CIR and Sheath. The mean values, the absolute and relative variations in MC and Ejecta for all parameters appeared to be either mean or lower than the mean value (the mean values of the electric field E y and of the B z component of IMF are higher in absolute value), while in CIR and Sheath they are higher than the mean value. High values of the relative density variation sN/〈N〉 are observed in MC. At the same time, the high values for relative variations of the velocity, B z component, and IMF magnitude are observed in Sheath and CIR. No noticeable distinctions in the relationships between considered parameters for moderate and strong magnetic storms were observed.  相似文献   

3.
Time behavior of the solar wind and interplanetary magnetic field parameters is investigated for 623 magnetic storms of the OMNI database for the period 1976–2000. The analysis is carried out by the superposed epoch technique (the magnetic storm onset time is taken to be the beginning of an epoch) for five various categories of storms induced by various types of solar wind: CIR (121 storms), Sheath (22 storms), MC (113 storms), and “uncertain type” (367 storms). In total, the analysis conducted for “all storms” included 623 storms. The obtained data, on one hand, confirm the results obtained earlier without selecting the intervals according to the solar wind types, and, on the other hand, they indicate the existence of distinctions in the time variation of parameters for various types of solar wind. Though the lowest values of the B z-component of IMF are observed in the MC, the lowest values of the D st-index are achieved in the Sheath. Thus, the strongest magnetic storms are induced, on average, during the Sheath rather than during the MC body passage, probably owing to higher pressure in the Sheath. Higher values of nkT, T/T exp, and β parameters are observed in the CIR and Sheath and lower ones in the MC, which corresponds to the physical essence of these solar wind types.  相似文献   

4.
Within the framework of the Space Weather program, 25-year data sets for solar X-ray observations, measurements of plasma and magnetic field parameters in the solar wind, and D st index variations are analyzed to reveal the factors that have had the greatest influence on the development of magnetospheric storms. The correlation between solar flares and magnetic storms practically does not exceed a level of correlation for random processes. In particular, no relation was found between the importance of solar flares and the minimum of the D st index for storms that could be connected with considered flares by their time delay. The coronal mass ejections (CME; data on these phenomena cover a small part of the interval) result in storms with D st < –60 nT only in half of the cases. The most geoeffective interplanetary phenomena are the magnetic clouds (MC), which many believe to be interplanetary manifestations of CMEs, and compressions in the region of interaction of slow and fast streams in the solar wind (the so-called Corotating Interaction Region, CIR). They correspond to about two-thirds of all observed magnetic storms. For storms with –100 < D st < –60 nT, the frequencies of storms from MC and CIR being approximately equal. For strong storms with D st < – 100 nT, the fraction of storms from MC is considerably higher. The problems of reliable prediction of geomagnetic disturbances from observations of the Sun and conditions in interplanetary space are discussed.  相似文献   

5.
Based on the archive OMNI data for the period 1976–2000 an analysis has been made of 798 geomagnetic storms with D st < −50 nT and their interplanetary sources-large-scale types of the solar wind: CIR (145 magnetic storms), Sheath (96), magnetic clouds MC (62), and Ejecta (161). The remaining 334 magnetic storms have no well-defined sources. For the analysis, we applied the double method of superposed epoch analysis in which the instants of the magnetic storm beginning and minimum of D st index are taken as reference times. The well-known fact that, independent of the interplanetary source type, the magnetic storm begins in 1–2 h after a southward turn of the IMF (B z < 0) and both the end of the main phase of a storm and the beginning of its recovery phase are observed in 1–2 h after disappearance of the southward component of the IMF is confirmed. Also confirmed is the result obtained previously that the most efficient generation of magnetic storms is observed for Sheath before MC. On the average parameters B z and E y slightly vary between the beginning and end of the main phase of storms (minimum of D st and D st * indices), while D st and D st * indices decrease monotonically proportionally to integral of B z and E y over time. Such a behavior of the indices indicates that the used double method of superposed epoch analysis can be successfully applied in order to study dynamics of the parameters on the main phase of magnetic storms having different duration.  相似文献   

6.
This work is a continuation of investigation [1] of the behavior of the solar wind’s and interplanetary magnetic field’s parameters near the onset of geomagnetic storms for various types of solar wind streams. The data of the OMNI base for the 1976–2000 period are used in the analysis. The types of solar wind streams were determined, and the times of beginning (onsets) of magnetic storms were distributed in solar wind types as follows: CIR (121 storms), Sheath (22 storms), MC (113 storms), and “uncertain type” (367 storms). The growth of variations (hourly standard deviations) of the density and IMF magnitude was observed 5–10 hours before the onset only in the Sheath. For the CIR-, Sheath-and MC-induced storms the dependence between the minimum of the IMF B z-component and the minimum of the D st -index, as well as the dependence between the electric field E y of solar wind and the minimum of the D st -index are steeper than those for the “uncertain” solar wind type. The steepest D st vs. B z dependence is observed in the Sheath, and the steepest D st vs. E y dependence is observed in the MC.  相似文献   

7.
The influence of auroral electojets and solar wind parameters on variations in low-latitude geomagnetic disturbances and D st during strong magnetic storms on November 7–8, 2004 with D st ≈ −380 nT and on November 9–10, 2004 with D st ≈ −300 nT is studied on the basis of global geomagnetic observations. It is found that the impulsive variations of the western electrojet intensity with a duration of Δt ≈ 1–2 h (probably, substorm disturbances) lead to positive low-latitude disturbances of ΔH at Φ′ ≈ 10°–30° and to disturbances of the same durations with an amplitude +ΔH ∼ 30–100 nT at latitudes of the polar cap (Φ′ ≈ 75°–80°). More durable (with Δt ≥ 10 h) convection electrojets whose centers are shifted to latitudes of ∼50°–55° in the process of storm development are the main cause of the increase in negative values of ΔH at low latitudes and D st . It is shown that meridional dynamics of position of the center of electrojets and the equatorial boundary of the auroral oval is governed by variations (increase or decrease) in the intensity of negative values of the IMF B z component. It is assumed that in these storms the intensification of the magnetospheric partially ring current closes the circuit to the ionosphere with the help of field-aligned currents at the equatorial boundary of the auroral oval is the main cause of the magnetic field depression at low latitudes.  相似文献   

8.
In this paper we continue the analysis of the influence of solar and interplanetary events on magnetic storms of the Earth that was started in [9, 10]. Different experimental results on solar-terrestrial physics are analyzed in the study and the effects are determined that arise due to differences in the methods used to analyze the data. The classifications of magnetic storms by the K p and D st indices, the solar flare classifications by optical and X-ray observations, and the classifications of different geoeffective interplanetary events are compared and discussed. It is demonstrated that quantitative estimations of the relationships between two types of events often depend on the direction in which the events are compared. In particular, it was demonstrated that the geoeffectiveness of halo CMEs (that is, the percentage of Earth-directed coronal mass ejections that result in geomagnetic storms) is 40–50%. Higher values given in some papers were obtained by another method, in which they were defined as the probability of finding candidates for a source of geomagnetic storms among CMEs, and, strictly speaking, these values are not true estimates of the geoeffectiveness. The latter results are also in contrast with the results of the two-stage tracing of the events: first a storm—an interplanetary disturbance, and then an interplanetary disturbance—a CME.  相似文献   

9.
Based on Polar satellite data, the authors have studied the auroral disturbances that arose during the passage by the Earth of compressed plasma regions formed in front of high-speed solar wind streams (the CIR region) and in front of magnetic clouds (the Sheath region). The aurorae observed by the Polar satellite possessed basic signatures of a substorm: a localized onset and expansion toward the pole and westward and eastward. However, in these cases they had a very large size in longitude and latitude and occupied a very large area. All disturbances observed by the Polar satellite during the Sheath and CIR regions of the solar wind in December of 1996, in 1997–1998, and in 2000 were analyzed. Eight events during disturbance development in the ionosphere, when the Geotail satellite was located in the plasma sheet of the magnetospheric tail, were selected. It is shown that in all selected cases some typical signatures of substorm development in the magnetospheric tail were observed, namely: (1) fast plasma flows (flow reversal, i.e., from tailwards to Earthwards) and (2) a sharp decrease of the total pressure, which followed an interval of total pressure increase. One can draw the conclusion that in the CIR and Sheath regions with a high solar wind density, substorm disturbances of a specific type are observed, with large latitudinal and longitudinal size (sometimes occupying the entire polar cap).  相似文献   

10.
In this paper we continue the analysis of the influence of solar and interplanetary events on magnetospheric storms that was started in [1]. Two data sets are additionally analyzed in the present study: solar flares of importance M5 and greater in 1976–2000 and halo CMEs observed by the SOHO spacecraft during the period of 1996–2000. It is demonstrated that the statistical characteristics of the new set of flares and of that analyzed before in [1] differ little, while the geoeffectiveness of the halo CMEs turned out to be much less than that of the previously published CMEs.  相似文献   

11.
The main goal of this paper is to compile a catalog of large-scale phenomena in the solar wind over the observation period of 1976–2000 using the measurement data presented in the OMNI database. This work included several stages. At first the original OMNI database was supplemented by certain key parameters of the solar wind that determine the type of the solar wind stream. The following parameters belong to this group: the plasma ratio β, thermal (NkT) and kinetic (mNV 2) pressures of the solar wind, the ratio T/T exp of measured and expected temperatures, gradients of the plasma velocity and density, and the magnetic field gradient. The results of visualization of basic plasma parameters that determine the character of the solar wind stream are presented on the website of the Space Research Institute, Moscow. Preliminary identification of basic types of the solar wind stream (FAST and SLOW streams, Heliospheric Current Sheet (HCS), Corotating Interaction Region (CIR), EJECTA (or Interplanetary Coronal Mass Ejections), Magnetic Cloud (MC), SHEATH (compression region before EJECTA/MC), rarified region RARE, and interplanetary shock wave IS) had been made with the help of a preliminary identification program using the preset threshold criteria for plasma and interplanetary magnetic field parameters. Final identification was done by comparison with the results of visual analysis of the solar wind data. In conclusion, histograms of distributions and statistical characteristics are presented for some parameters of various large-scale types of the solar wind.  相似文献   

12.
Fluxes of trapped protons with energies above 70 MeV measured onboard the NOAA-15 satellite during the 23rd solar activity cycle (from 1999 to 2006) are analyzed. Comparing to similar experimental data obtained for 1976–1996, regularities of changes in the proton flux at low drift shells (L = 1.14–1.20) of the Earths’s radiation belt caused by changes in the solar activity are discussed.  相似文献   

13.
This paper discusses the errors in analyzing solar-terrestrial relationships, which result from either disregarding the types of interplanetary drivers in studying the magnetosphere response on their effect or from the incorrect identification of the type of these drivers. In particular, it has been shown that the absence of selection between the Sheath and ICME (the study of so-called CME-induced storms, i.e., magnetic storms generated by CME) leads to errors in the studies of interplanetary conditions of magnetic storm generation, because the statistical analysis has shown that, in the Sheath + ICME sequences, the largest number of storm onsets fell on the Sheath, and the largest number of storms maxima fell at the end of the Sheath and the beginning of the ICME. That is, the situation is observed most frequently when at least the larger part of the main phase of storm generation falls on the Sheath and, in reality, Sheath-induced storms are observed. In addition, we consider several cases in which magnetic storms were generated by corotating interaction regions, whereas the authors attribute them to CME.  相似文献   

14.
We present the results of studying the magnetospheres’s response to sharp changes of the solar wind flow (pressure) based on observations of variations of the ions flux of the solar wind onboard the Inreball-1 satellite and of geomagnetic pulsations (the data of two mid-latitude observatories and one auroral observatory are used). It is demonstrated that, when changes of flow runs into the magnetosphere, in some cases short (duration ~ < 5 min) bursts of geomagnetic pulsations are excited in the frequency range Δf~ 0.2–5 Hz. The bursts of two types are observed: noise bursts without frequency changes and wide-band ones with changing frequency during the burst. A comparison is made of various properties of these bursts generated by pressure changes at constant velocity of the solar wind and by pressure changes on the fronts of interplanetary shock waves at different directions of the vertical component of the interplanetary magnetic field.  相似文献   

15.
We present the results of a cross-correlation analysis made on the basis of Spearman’s rank correlation method. The quantities to correlate are daily values of the fluence of energetic electrons at a geosynchronous orbit, intensities of ground and interplanetary ultra-low-frequency (ULF) oscillations in the Pc5 range, and parameters of the solar wind. The period under analysis is the 23rd cycle of solar activity, 1996–2006. Daily (from 6 h to 18 h of LT) magnetic data at two diametrically opposite observatories of the Intermagnet network are taken as ground-based measurements. The fluxes of electrons with energies higher than 2 MeV were measured by the geosynchronous GOES satellites. The data of magnetometers and plasma instruments installed on ACE and WIND spacecraft were used for analysis of the solar wind parameters and of the oscillations of the interplanetary magnetic field (IMF). Some results elucidating the role played by interplanetary ULF waves in the processes of generation of magneospheric oscillations and acceleration of energetic electrons are obtained. Among them are (i) high and stable correlation of ground ULF oscillations with waves in the solar wind; (ii) closer link of mean daily amplitudes of both interplanetary and ground oscillations with ‘tomorrow’ values of the solar wind velocity than with current values; and (iii) correlation of the intensity of ULF waves in the solar wind, normalized to the IMF magnitude, with fluxes of relativistic electrons in the magnetosphere.  相似文献   

16.
Based on the results of investigations made by various authors applying different semiempirical models, we have formulated the principles of a complex method that allows one to associate sporadic streams of the solar wind (SW) at the Earths orbit with coronal mass ejections (CMEs), which are their sources on the Sun. This method is applied to an analysis of the events in the interval from October 26 to November 6, 2003. It is shown that, in the period under consideration, which is close to the maximum of solar activity, the majority of CMEs (up to 80% of their total number) turn out to be at the base of a chain of streamers. It is also shown that the component of the interplanetary magnetic field is the main factor of geoeffectiveness for six sporadic SW streams. At the same time, an unusually low value of the index minDst< -300 nT for two streams with the velocities Vmax > 1000 km/s is a consequence of the fact that they are not isolated; i.e., the subsequent stream moves through the medium disturbed by the preceding stream.Translated from Kosmicheskie Issledovaniya, Vol. 42, No. 6, 2004, pp. 595–607.Original Russian Text Copyright © 2004 by M. Eselevich, V. Eselevich.  相似文献   

17.
The features of the excitation of spatially localized long-period (10–15 min) irregular pulsations with a maximum amplitude of ~200 nT at a geomagnetic latitude of 66° in the morning sector 5 MLT are considered. Fluctuations were recorded against the background of substorm disturbances (maximum AE ~ 1278 nT). Antiphase variations of plasma density and magnetic field accompanied by vortex disturbances of the magnetic field both in the magnetosphere and the ionosphere have been recorded in the magnetosphere in this sector. Compression fluctuations corresponding to a slow magnetosonic wave have been recorded in the interplanetary medium in the analyzed period. It is assumed that pulsations have been excited in the localization of the cloud of injected particles in the plasma sheet by compression fluctuations caused by variations of the dynamic pressure of solar wind.  相似文献   

18.
Statistical studies of properties of the solar wind and interplanetary magnetic field, based on an extended database for the period 1963–2007 including four solar cycles, show that the Gaussian approximation well suites for some parameters as the probability distribution of their numerical values, while for others the lognormal law is preferred. This paper gives an interpretation of these results as associated with predominance of linear or nonlinear processes in composition and interaction of various disturbances and irregularities propagating and originating in the interior of the Sun and its atmosphere, including the solar corona and the solar wind running away from it. Summation of independent random components of disturbances leads, according to the central limit theorem of the probability theory, to the normal (Gaussian) distributions of quantities proper, while their multiplication leads to the normal distributions of logarithms. Thus, one can discuss the algebra of events and associate observed statistical distinctions with one or another process of formation of irregularities in the solar wind. Among them there are impossible events (having null probability) and reliable events (occurring with 100% probability). For better understanding of the relationship between algebra and statistics of events in the solar wind further investigations are necessary.  相似文献   

19.
Altitude—temporal cross-sections q(z, t) of atmospheric ionization rates by solar protons above the polar regions were calculated using the GOES-10 satellite data on solar proton fluxes for the period of solar proton flare (SPF) on July 14, 2000. The values of q(z, t) were used further in calculations of variations of the atmospheric chemical composition during the flare in the northern and southern polar regions (70°N and 70°S) by two different 1D photochemical models of the atmosphere (neutral and charged components). The calculation results have shown considerable variation of the ozone content after SPF: a decrease of [O3] was about 80% at altitudes of 65–75 km above northern and 25% in the layer of 55–65 km above the southern polar region. Such decrease of the ozone content is a result of reactions with [NO] and [OH] whose concentrations have grown substantially during SPF. According to calculations, the increase of electron concentration during SPF has reached 3–4 orders of magnitude at altitudes of 50–80 km. A comparison of the calculation results with the observational data on [NO], [NO2], and [O3] from the UARS and HALOE satellites for 70°N have shown a good qualitative correspondence, however, for variations of nitric oxides there are quantitative discrepancies.  相似文献   

20.
The significance of the contribution of solar protons to fluxes of trapped radiation in the Earth’s outer radiation belt (L > 2) is estimated for various phases of solar activity. In periods of high solar activity, proton fluxes with the energy 1–5 MeV at L = 2–3 for the bulk of time have SCR as a source, during a minimum of solar activity, trapped proton fluxes are determined by the conventional diffusive mechanism under the action of sudden IMF impulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号