首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coronal holes can produce several types of solar wind with a variety of compositional properties, depending on the location and strength of the heating along their open magnetic field lines. High-speed wind is associated with (relatively) slowly diverging flux tubes rooted in the interiors of large holes with weak, uniform footpoint fields; heating is spread over a large radial distance, so that most of the energy is conducted outward and goes into accelerating the wind rather than increasing the mass flux. In the rapidly diverging open fields present at coronal hole boundaries and around active regions, the heating is concentrated at low heights and the temperature maximum is located near the coronal base, resulting in high oxygen freezing-in temperatures and low asymptotic wind speeds. Polar plumes have a strong additional source of heating at their bases, which generates a large downward conductive flux, raising the densities and enhancing the radiative losses. The relative constancy of the solar wind mass flux at Earth reflects the tendency for the heating rate in coronal holes to increase monotonically with the footpoint field strength, with very high mass fluxes at the Sun offsetting the enormous flux-tube expansion in active region holes. Although coronal holes are its main source, slow wind is also released continually from helmet streamer loops by reconnection processes, giving rise to plasma blobs (small flux ropes) and the heliospheric plasma sheet.  相似文献   

2.
We take stock of recent observations that identify the episodic plasma heating and injection of Alfvénic energy at the base of fast solar wind (in coronal holes). The plasma heating is associated with the occurrence of chromospheric spicules that leave the lower solar atmosphere at speeds of order 100?km/s, the hotter coronal counterpart of the spicule emits radiation characteristic of root heating that rapidly reaches temperatures of the order of 1?MK. Furthermore, the same spicules and their coronal counterparts (“Propagating Coronal Disturbances”; PCD) exhibit large amplitude, high speed, Alfvénic (transverse) motion of sufficient energy content to accelerate the material to high speeds. We propose that these (disjointed) heating and accelerating components form a one-two punch to supply, and then accelerate, the fast solar wind. We consider some compositional constraints on this concept, extend the premise to the slow solar wind, and identify future avenues of exploration.  相似文献   

3.
In the 25 months since Jupiter flyby, the Ulysses spacecraft has climbed southward to a heliolatitude of 56°. This transit has been marked by an evolution from slow, dense coronal streamer belt solar wind through two regions where the rotation of the Sun carried Ulysses back and forth between streamer belt and polar coronal hole flows, and finally into a region of essentially continuous fast, low density solar wind from the southern polar coronal hole. Throughout these large changes, the momentum flux normalized to 1 AU displays very little systematic variation. In addition, the bulk properties of the polar coronal hole solar wind are quite similar to those observed in high speed streams in the ecliptic plane at 1 AU. Coronal mass ejections and forward and reverse shocks associated with corotating interaction regions have also been observed at higher heliolatitudes, however they are seen less frequently with increasing southern heliolatitude. Ulysses has thus far collected data from 20° of nearly contiguous solar wind flows from the polar coronal hole. We examine these data for characteristic variations with heliolatitude and find that the bulk properties in general show very little systematic variation across the southern polar coronal hole so far.  相似文献   

4.
Between its launch in October 1990 and the end of 1993, approximately 160 fast collisionless shock waves were observed in the solar wind by the Ulysses space probe. During the in-ecliptic part of the mission, to February 1992, the observed shock waves were first caused mainly by solar transient events following the solar maximum and the reorganisation of the large scale coronal fields. With the decay in solar activity, relatively stable Corotating Interaction Regions (CIRs) were observed betwen 3 and 5.4 AU, each associated with at least one forwardreverse shock pair. During the out-of-ecliptic phase of the orbit, from February 1992 onwards, CIRs and shock pairs associated with them continued to dominate the observations. From July 1992, Ulysses encountered the fast solar wind flow from the newly developed southern polar coronal hole, and from May 1993 remained in the unipolar magnetic region associated with this coronal hole. At latitudes beyond 30°, CIRs were associated almost exclusively with reverse shocks only. A comprehensive list of shock waves identified in the magnetic field and solar wind plasma data from Ulysses is given in Table 1. The principal characteristics were determined mainly from the magnetic field data. General considerations concerning the determination of shock characteristics are outlined in the Introduction.  相似文献   

5.
6.
We present a solar wind model which takes into account the possible origin of fast solar wind streams in coronal plumes. We treat coronal holes as being made up of essentially 2 plasma species, denser, warmer coronal plumes embedded in a surrounding less dense and cooler medium. Pressure balance at the coronal base implies a smaller magnetic field within coronal plumes than without. Considering the total coronal hole areal expansion as given, we calculate the relative expansion of plumes and the ambient medium subject to transverse pressure balance as the wind accelerates. The magnetic flux is assumed to be conserved independently both within plumes and the surrounding coronal hole. Magnetic field curvature terms are neglected so the model is essentially one dimensional along the coronal plumes, which are treated as thin flux-tubes. We compare the results from this model with white-light photographs of the solar corona and in-situ measurements of the spaghetti-like fine-structure of high-speed winds.  相似文献   

7.
This paper contains a summary of the topics treated in the working group on abundance variations in the solar atmosphere and in the solar wind. The FIP bias (overabundance of particles with low First Ionization Potentials over photospheric abundances) in coronal holes and coronal hole associated solar wind amounts to values between 1 and 2. The FIP bias in the slow solar wind is typically a factor 4, consistent with optical observations in streamers. In order to distinguish between different theoretical models which make an attempt to explain the FIP bias, some observable parameters must be provided. Unfortunately, many models are deficient in this respect. In addition to FIP fractionation, gravitational settling of heavy elements has been found in the core of long lived streamers. The so-called electron 'freeze in' temperatures derived from in situ observed ionization states of minor ions in the fast wind are significantly higher than the electron temperatures derived from diagnostic line ratios observed in polar coronal holes. The distinction between conditions in plumes and interplume lanes needs to be further investigated. The 'freeze in' temperatures for the slow solar wind are consistent with the electron temperatures derived for streamers. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

8.
In this paper I will briefly summarize the present status of our knowledge on the four different sorts of solar wind, their sources and their short- and long-term variations. First: the fast solar wind in high-speed streams that emerges from coronal hole regions. Second: the slow solar wind emerging from the non-active Sun near the global heliospheric current sheet above helmet streamers and underlying active regions. Third: the slow solar wind filling most of the heliosphere during high solar activity, emerging above active regions in a highly turbulent state, and fourth: the plasma expelled from the Sun during coronal mass ejections. The coronal sources of these different flows vary dramatically with the solar activity cycle.  相似文献   

9.
Summarized below are the discussions of working group 3 on "Coronal hole boundaries and interactions with adjacent regions" which took place at the 7th SOHO workshop in Northeast Harbor, Maine, USA, 28 September to 1 October 1998. A number of recent observational and theoretical results were presented during the discussions to shed light on different aspects of coronal hole boundaries. The working group also included presentations on streamers and coronal holes to emphasis the difference between the plasma properties in these regions, and to serve as guidelines for the definition of the boundaries. Observations, particularly white light observations, show that multiple streamers are present close to the solar limb at all times. At some distance from the sun, typically below 2 R, these streamers merge into a relatively narrow sheet as seen, for example, in LASCO and UVCS images. The presence of multiple current sheets in interplanetary space was also briefly addressed. Coronal hole boundaries were defined as the abrupt transition from the bright appearing plasma sheet to the dark coronal hole regions. Observations in the inner corona seem to indicate a transition of typically 10 to 20 degrees, whereas observations in interplanetary space, carried out from Ulysses, show on one hand an even faster transition of less than 2 degrees which is in agreement with earlier Helios results. On the other hand, these observations also show that the transition happens on different scales, some of which are significantly larger. The slow solar wind is connected to the streamer belt/plasma sheet, even though the discussions were still not conclusive on the point where exactly the slow solar wind originates. Considered the high variability of plasma characteristics in slow wind streams, it seems most likely that several types of coronal regions produce slow solar wind, such as streamer stalks, streamer legs and open field regions between active regions, and maybe even regions just inside of the coronal holes. Observational and theoretical studies presented during the discussions show evidence that each of these regions may indeed contribute to the solar slow wind. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Corotating Interaction Regions (CIRs) form as a consequence of the compression of the solar wind at the interface between fast speed streams and slow streams. Dynamic interaction of solar wind streams is a general feature of the heliospheric medium; when the sources of the solar wind streams are relatively stable, the interaction regions form a pattern which corotates with the Sun. The regions of origin of the high speed solar wind streams have been clearly identified as the coronal holes with their open magnetic field structures. The origin of the slow speed solar wind is less clear; slow streams may well originate from a range of coronal configurations adjacent to, or above magnetically closed structures. This article addresses the coronal origin of the stable pattern of solar wind streams which leads to the formation of CIRs. In particular, coronal models based on photospheric measurements are reviewed; we also examine the observations of kinematic and compositional solar wind features at 1 AU, their appearance in the stream interfaces (SIs) of CIRs, and their relationship to the structure of the solar surface and the inner corona; finally we summarise the Helios observations in the inner heliosphere of CIRs and their precursors to give a link between the optical observations on their solar origin and the in-situ plasma observations at 1 AU after their formation. The most important question that remains to be answered concerning the solar origin of CIRs is related to the origin and morphology of the slow solar wind. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
Analysis of the Genesis samples is underway. Preliminary elemental abundances based on Genesis sample analyses are in good agreement with in situ-measured elemental abundances made by ACE/SWICS during the Genesis collection period. Comparison of these abundances with those of earlier solar cycles indicates that the solar wind composition is relatively stable between cycles for a given type of flow. ACE/SWICS measurements for the Genesis collection period also show a continuum in compositional variation as a function of velocity for the quasi-stationary flow that defies the simple binning of samples into their sources of coronal hole (CH) and interstream (IS).  相似文献   

12.
Since 1972, nearly continuous observations of coronal holes and their associated photospheric magnetic fields have been made using a variety of satellite and ground-based equipment. The results of comparisons of these observations are reviewed and it is demonstrated that the structure and evolution of coronal holes is basically governed by the large-scale distribution of photospheric magnetic flux. Non-polar holes form in the decaying remnants of bipolar magnetic regions in areas with a large-scale flux imbalance. There is strong indirect evidence that the magnetic field in coronal holes is always open to interplanetary space but not all open-field regions have associated coronal holes. The well-observed declining phase of the last solar cycle was characterized by stable magnetic field and coronal hole patterns which were associated with recurrent, high-speed wind streams and interplanetary magnetic field patterns at the Earth. The ascending phase of the current cycle has been characterized by transient magnetic field and coronal hole patterns which tend to occur at high solar latitudes. This shift in magnetic field and coronal hole patterns has resulted in a less obvious and more complicated association with high-speed wind streams at the Earth.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.Visiting Scientist, Kitt Peak National Observatory.  相似文献   

13.
The heating of the solar corona and therefore the generation of the solar wind, remain an active area of solar and heliophysics research. Several decades of in situ solar wind plasma observations have revealed a rich bimodal solar wind structure, well correlated with coronal magnetic field activity. Therefore, the reconnection processes associated with the large-scale dynamics of the corona likely play a major role in the generation of the slow solar wind flow regime. In order to elucidate the relationship between reconnection-driven coronal magnetic field structure and dynamics and the generation of the slow solar wind, this paper reviews the observations and phenomenology of the solar wind and coronal magnetic field structure. The geometry and topology of nested flux systems, and the (interchange) reconnection process, in the context of coronal physics is then explained. Once these foundations are laid out, the paper summarizes several fully dynamic, 3D MHD calculations of the global coronal system. Finally, the results of these calculations justify a number of important implications and conclusions on the role of reconnection in the structural dynamics of the coronal magnetic field and the generation of the solar wind.  相似文献   

14.
The transition between coronal hole associated fast solar wind and slow solar wind is studied using data from the high resolution mass spectrometer SWICS on ACE. We discuss the data in the framework of a recent theory about the global heliospheric magnetic field and conclude that the data are consistent with magnetic connections between field-lines in the fast and in the slow wind. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
This is the first study of the isotopic composition of solar wind helium with the SWICS time-of flight mass spectrometer. Although the design of SWICS is not optimized to measure3He abundances precisely,4He/3He flux ratios can be deduced from the data. The long term ratio is 2290±200, which agrees with the results obtained with the ICI magnetic mass spectrometer on ISEE-3 and with the Apollo SWC foil experiments.The ULYSSES spacecraft follows a trajectory which is ideal for the study of different solar wind types. During one year, from mid-1992 to mid-1993, it was in a range of heliographic latitudes where a recurrent fast stream from the southern polar coronal hole was observed every solar rotation. Solar wind bulk velocities ranged from 350 km/s to 950 km/s which would, in principle allow us to identify velocity-correlated compositional variations. Our investigation of solar wind helium, however, shows an isotopic ratio which does not depend on the solar wind speed.  相似文献   

16.
Coronal holes are low-density regions of the corona which appear dark in X-rays and which contain “open” magnetic flux, along which plasma escapes into the heliosphere. Like the rest of the Sun’s large-scale field, the open flux originates in active regions but is subsequently redistributed over the solar surface by transport processes, eventually forming the polar coronal holes. The total open flux and radial interplanetary field component vary roughly as the Sun’s total dipole strength, which tends to peak a few years after sunspot maximum. An inverse correlation exists between the rate of flux-tube expansion in coronal holes and the solar wind speed at 1 AU. In the rapidly diverging fields present at the polar hole boundaries and near active regions, the bulk of the heating occurs at low heights, leading to an increase in the mass flux density at the Sun and a decrease in the asymptotic wind speed. The quasi-rigid rotation of coronal holes is maintained by continual footpoint exchanges between open and closed field lines, with the reconnection taking place at the streamer cusps. At much lower heights within the hole interiors, “interchange reconnection” between small bipoles and the overlying open flux also gives rise to coronal jets and polar plumes.  相似文献   

17.
Coronal holes are the coolest and darkest regions of the upper solar atmosphere, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. During the years of the solar minima, coronal holes are generally confined to the Sun??s polar regions, while at solar maxima they can also be found at lower latitudes. Waves, observed via remote sensing and detected in-situ in the wind streams, are most likely responsible for the wind and several theoretical models describe the role of MHD waves in the acceleration of the fast solar wind. This paper reviews the observational evidences of detection of propagating waves in these regions. The characteristics of the waves, like periodicities, amplitude, speed provide input parameters and also act as constraints on theoretical models of coronal heating and solar wind acceleration.  相似文献   

18.
Pneuman  G. W. 《Space Science Reviews》1986,43(1-2):105-138
In this review, we consider the central physical aspects pertinent to the acceleration of the solar wind. Special importance is placed on the high-speed streams since the properties of these structures seem to strain the various theoretical explanations the most. Heavy emphasis is also given to the observations — particularly as to what constraints they place on the theories. We also discuss certain sporadic events such as spicules, macrospicules, X-ray bright points, and outflows seen in the EUV associated with the explosive events, jets, and coronal bullets which could be of relevance to this problem.Three theoretical concepts pertaining to the solar wind acceleration process are examined — purely thermal acceleration with and without extended heating, acceleration due to Alfvén wave pressure, and diamagnetic acceleration. Emphasis is given to how well these theories meet the constraints imposed by the observations. Diamagnetism is argued to be a powerful ingredient in solar wind theory, both in the light of observed sporatic outflows seen in the chromosphere and transition region and also because of its effectiveness in increasing the flow speed and producing strong acceleration near the Sun in line with coronal hole observations.  相似文献   

19.
20.
There are three major types of solar wind: The steady fast wind originating on open magnetic field lines in coronal holes, the unsteady slow wind coming probably from the temporarily open streamer belt and the transient wind in the form of large coronal mass ejections. The majority of the models is concerned with the fast wind, which is, at least during solar minimum, the normal mode of the wind and most easily modeled by multi-fluid equations involving waves. The in-situ constraints imposed on the models, mainly by the Helios (in ecliptic) and Ulysses (high-latitude) interplanetary measurements, are extensively discussed with respect to fluid and kinetic properties of the wind. The recent SOHO observations have brought a wealth of new information about the boundary conditions for the wind in the inner solar corona and about the plasma conditions prevailing in the transition region and chromospheric sources of the wind plasma. These results are presented, and then some key questions and scientific issues are identified. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号