首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
超声速冷却气膜是应用于高超声速成像制导飞行器上的一项关键技术,静压比是影响超声速冷却气膜流场发展的重要因素。为研究静压比对该流场的影响规律,在M6高超声速风洞中采用基于纳米粒子的平面激光散射技术,对不同静压比下的马赫数3超声速冷却气膜流场进行了实验研究,获得了流场的瞬态流动显示图像。通过瞬态流动显示图像分析,研究了高超声速主流与超声速喷流之间边界面的发展过程;通过分形维数及间歇性分析,研究了静压比对湍流化程度的影响。结果表明在波系结构、喷流厚度及湍流化程度等方面,静压比对超声速冷却气膜产生了明显的影响:气膜总体厚度和静压比正相关,欠压状态和匹配状态气膜厚度增长先慢后快,过压状态先快后慢;欠压状态和匹配状态湍流破碎因子在流场前段普遍小于过压状态,但其沿流向增长较快,最终压力匹配状态湍流破碎因子最大,湍流化程度最高。  相似文献   

2.
采用大涡模拟方法对钝头双锥喷流致冷流场开展了数值模拟,研究了超声速喷流混合流场结构特征及密度脉动特性。大涡模拟方法基于隐式亚格子模型,空间离散采用高精度通量限制型紧致格式,时间推进采用显式Runger-Kutta方法。数值模拟清晰地捕捉到了流场波系结构,精细地预测了流动发生失稳、转捩以及发展为充分发展湍流的物理过程,直接获得了流场密度脉动特性。通过有、无喷流状态对称面流场的对比,发现超声速喷流能够有效冷却光学窗口;喷流与主流形成的混合层不稳定,很快发生失稳和转捩,形成大尺度湍流结构,进而引起强烈的密度脉动。此外,获得了钝头双锥整体模型喷流致冷流场的空间发展形态特征。   相似文献   

3.
采用基于纳米示踪的平面激光散射(NPLS)技术,探索了流场超高帧频成像测试研究的试验系统,主要解决了多个单脉冲激光器并联后的稳定性和合束、阵列CCD相机的整体设计和布局以及测试系统的同步精确控制等问题,通过对系统的时序和分系统调试,实现了测试系统的精确控制。基于此系统,在单位雷诺数为6.30×106/m的条件下,在马赫数为3.4的超声速低噪声风洞中开展了θ=20°激波发生器入射激波与来流壁面湍流边界层干扰相关试验研究。在试验条件下获得了序列连续时间相关的激波与湍流边界层干扰的瞬态流场精细结构图像,并分析了其流场结构的时空演化特性。  相似文献   

4.
超声速喷流混合流场大涡模拟   总被引:4,自引:3,他引:1  
以光学窗口外冷喷流为研究背景,采用大涡模拟方法对后台阶外形切向喷流混合流场进行了研究。数值方法基于隐式亚格子模型,采用高精度WENO格式进行空间离散,并通过超声速平面混合层流动对数值方法进行了考核验证。喷流混合流场计算模型与试验一致,来流和喷流马赫数分别为3.4和2.5。数值模拟清晰地捕捉到了流场波系以及混合剪切层、壁面边界层等典型流场结构,并精细预测了混合层发生失稳、转捩及发展为充分发展湍流的时空发展过程。数值模拟得到的湍流大尺度结构的位置和形态与实验图像一致。通过对瞬时流场、统计平均流场和脉动参数的分析,揭示了流场结构特征及其时空演化规律,并获得了流场密度脉动特性。   相似文献   

5.
超声速底部喷流干扰流场数值模拟   总被引:1,自引:0,他引:1  
数值模拟了不同马赫数,不同喷流压比下的轴对称超声速底部喷流干扰流场,采用LU隐式算法进行数值求解并引入了Baldwin-Lomax代数湍流模型.采用分区网格将弹身与底部区域合为一个整体进行计算,得到了清晰的流场结构和弹体表面及底部的压力分布,并与试验结果进行了比较.数值模拟结果表明超声速底部喷流干扰流场结构复杂,有、无喷流时底部流场有很大不同, 喷流对底压分布有明显影响,进而对轴向力系数影响显著.  相似文献   

6.
导弹助推器分离过程数值模拟研究   总被引:2,自引:1,他引:1  
应用了结构网格中的Chimera重叠网格技术和Favre平均三维N-S方程以获得流场解.采用k-ε湍流模型模拟气体的湍流粘性影响,计算中分别考虑空气和两种火箭发动机喷流等三种不同流动介质,采用时间相关边界模拟发动机拖尾段的非定常流动,最终求解带约束的六自由度弹道方程模拟了导弹助推器的分离脱落过程.并对发动机喷流对助推器分离的影响开展研究.所做工作可对于精确确定火箭助推器分离轨迹及姿态提供方法参考.   相似文献   

7.
喷流-外流干扰流场数值模拟   总被引:3,自引:3,他引:0  
李栋  焦予秦  宋科 《航空学报》2008,29(2):292-296
 研究了一种适用于推力矢量的内外流干扰复杂流场的数值模拟方法。主要讨论了能灵活处理复杂外形的重叠-搭接网格技术;适于低速大迎角流动及重叠 搭接网格技术的湍流模型以及是否考虑内流的喷流边界条件的定义。在数值模拟方法研究基础上对矢量推力飞机喷流-外流干扰流场进行了分析研究。包括计及喷管内流的内外流干扰流场数值模拟;给定喷管出口边界条件的喷流-外流干扰流场数值模拟;复杂外形引入喷流边界的数值模拟。以上计算反映了喷流对不同外流情况时的流扬的影响和气动力的影响。数值模拟说明,采用重叠-搭接混合网格处理复杂外形,使用恰当的湍流模型可以较好地模拟喷流-外流的干扰流场。  相似文献   

8.
激波风洞侧向喷流干扰效应试验研究   总被引:1,自引:0,他引:1  
为研究高速飞行器在高超声速来流条件下侧向喷流干扰效应,在CARDC-φ2m激波风洞上采用"先内流,后外流"的总体技术方案,完成了双锥模型在M6~M10,模拟高度20km~40km,有侧向喷流条件下的测压、测力试验研究,并采用高速流场显示方法进行了流场纹影照相.喷流模拟装置为路德维希管,冷喷流采用氮气,热喷流采用氢氧燃烧的高温气体,喷流有效时间不少于50ms.试验气流为激波风洞产生的高超声速氮气流,有效试验时间为4ms~20ms.试验研究获得了模型攻角在-10°~10°之间,不同的马赫数、高度和侧向喷流状态下的相关试验结果.本文给出了试验数据曲线和流场纹影照片,并对结果进行了初步分析和讨论.  相似文献   

9.
徐敏  陈刚  陈志敏  陈士橹 《推进技术》2005,26(2):120-124
当姿态控制发动机工作时间很短时, 喷流干扰产生的非定常气动特性就显得非常重要。为了研究脉冲发动机起动到关闭过程中引起的非定常气动特性对导弹控制效应的影响, 采用了二阶时间精度的LU隐式时间推进格式和双时间计算技术, 数值求解了飞行马赫数M∞=5, 迎角α=0°情况下, 拦截导弹姿态控制脉冲发动机喷流的瞬态过程和所产生的非定常气动特性。以0 001ms间隔观察了导弹表面在喷流出口附近非定常干扰流动分离区的发展过程。给出了详细的喷流瞬态干扰流场结构, 以及喷流瞬态干扰区随时间改变的流场细节特性。研究表明: 喷流前的高压区和喷流后的低压区对非定常效应非常敏感。并且, 当喷流已完全关闭时刻还存在喷流羽流的残余干扰量。  相似文献   

10.
超声速横喷干扰湍流场数值模拟   总被引:3,自引:0,他引:3  
本文探讨了超声速平板横向喷流干扰湍流流场的数值模拟方法。分别采用Roe、Harten-Yee及AUSM 格式对三维雷诺平均Navier-Stokes方程进行离散,湍流模拟应用Baldwin-Lomax代数模型,讨论了B-L模型中Fy最大值的不同选取方式。分析了数值格式、网格划分对计算结果的影响。将来流马赫数为5、喷流马赫数为3的实验结果与计算结果进行比较,选择了与实验符合较好的数值模拟方法,为进一步利用数值计算方法研究喷流干扰流场特性奠定基础。  相似文献   

11.
12.
超跨音对转涡轮试验台   总被引:2,自引:0,他引:2  
超跨音对转涡轮试验台由进气涡壳、轴流式试验段 ( 2个转子 )、排气涡壳、2个减速箱、2个电涡流测功器、燃烧加热器、滑油系统等组成。它可以允许轴流式涡轮高低压转子对转或同向旋转 ,对有或无导叶涡轮进行气动方面的研究工作。采用不接触测量 ,如 PIV激光测速等可视化测量手段 ,便于对级间流场的分析研究。  相似文献   

13.
NPLS技术及其在高速飞行器气动研究中的应用   总被引:1,自引:0,他引:1  
近年来,与高速飞行器相关的超声速/高超声速流动受到了极大关注。这类流动所具有的非定常性、强梯度和可压缩性对试验研究提出了挑战。纳米示踪的平面激光散射技术(NPLS)是2005年由作者所在的研究团队研发的非接触光学测试技术。它能够获得超声速三维流场的某个剖面的瞬态流动结构,并且具有较高的时空分辨率。目前,许多研究结果表明NPLS是研究超声速湍流的一项非常有效的技术。近年来,作者应用 NPLS 技术在超声速湍流研究中取得了较大的进展,并且基于NPLS开发了其它几种技术,比如基于 NPLS 的密度场测量技术(NPLS-DT),能够获得超声速流动的密度场信息并还能进一步得到雷诺应力分布。本文介绍了NPLS技术并回顾了其在超声速边界层、激波/边界层相互作用等流动中的应用。由于能够获得雷诺压力和湍动能等统计量, NPLS技术有望在发展可压缩湍流模型的研究中发挥作用。  相似文献   

14.
夹气喷嘴瞬态喷雾的CFD仿真及试验   总被引:3,自引:1,他引:2  
通过CFD仿真和试验的方法研究了夹气喷嘴的瞬态喷雾特性并验证了喷雾仿真模型的准确性.利用Fluent软件在不同环境背压和不同喷气压力的条件下进行了瞬态喷雾的CFD仿真计算,同时利用高速摄影机拍摄定容弹内部的喷雾形态,以及通过激光粒径测试仪对大气环境下的喷雾进行燃油液滴SMD的测量.结果表明:喷嘴出口处高速流出的压缩气体与燃油发生强烈的耦合,并于下游处产生强烈的涡环结构;试验中环境背压减少0.2MPa时所增加的平均贯穿速率是喷气压力增加0.2MPa时的3.62倍;喷雾平均贯穿速率的试验结果与仿真结果的平均误差为9.94%;试验得到的喷嘴外围的喷雾平均索特直径与仿真平均索特直径的平均误差为4.33%.   相似文献   

15.
为了获得高温射流中微粒的速度,建立了一套显微照像系统。该系统由双脉冲YAG激光光源、粒子放大成像系统、图像接收系统组成。在采用显微成像技术、补偿式滤光技术、序列成像技术后,克服了喷射粒子直径小、流场发光强、温度高等困难,实现了对同一粒子的两序列照像,根据两幅序列照片,获得了粒子的喷射速度。对该系统的组成、原理及试验结果进行了介绍。  相似文献   

16.
压气机转子叶片的抑颤设计   总被引:1,自引:1,他引:0       下载免费PDF全文
李迪  张晓杰  王延荣 《推进技术》2020,41(9):2120-2129
为了建立适用于工程设计的叶片抑颤方法,以一高压压气机转子叶片为对象开展了叶片颤振特性与其结构参数的关联性研究。采用基于相位延迟边界条件的能量法和特征值法对原转子叶片模型的气动弹性稳定性进行评估,通过分析近失速工况下的非定常气动功密度分布,对叶片安装角沿径向分布、弦长和叶尖间隙等设计参数进行调整,以明确各参数对气动弹性稳定性的影响,最终达到提高气动阻尼的目的。研究结果表明:叶尖间隙对气动阻尼的影响较大,安装角次之,弦长影响相对较小。叶片气动阻尼随叶尖间隙的变化并非单调,而是存在一个叶尖间隙使其气动阻尼最小,即叶片气动弹性稳定性最差。减小进口气流攻角和增加折合频率,能够提高气动阻尼,设计中可以通过调节安装角来减小气流攻角,增加弦长来增大折合频率。考虑到对叶片气动性能的影响,在调节安装角时通常要保证进口气流攻角的改变量不超过5°,调节弦长和叶尖间隙时要保证各结构构件不发生碰摩。  相似文献   

17.
激光吸收光谱技术测量非均匀燃烧流场研究进展   总被引:1,自引:0,他引:1  
可调谐半导体激光吸收光谱技术(TDLAS)具有非侵入性、灵敏度高和时间响应快等优点,将激光吸收光谱技术与最小二乘法、计算机断层扫描重建技术(CT)相结合,可以实现对非均匀燃烧流场的分布测量。首先简要介绍了激光吸收光谱技术的发展历程及测量基本原理,然后分别对激光吸收光谱技术测量非均匀流场一维分布、二维分布的国内外研究现状及关键技术进行了综述,比较分析了二维非均匀流场诊断实验中旋转和固定两种安装模式的优缺点及相对应的光线布局,总结了用于流场二维重建的相关重建算法,最后讨论了激光吸收光谱技术测量非均匀流场研究工作的发展趋势和有待解决的相关问题。  相似文献   

18.
利用沸石分子筛对氧气和氮气选择性吸附的特性,提出了分子筛吸附-解吸模拟密封舱内人体消耗氧气的方法,研制了能够模拟5人耗氧量的试验装置,并对装置的富氧气体氧浓度、密封舱内气体成分吸附情况、耗氧模拟精度及补氮气功能等进行了测试和分析,经环控生保系统集成性能试验的使用考核,装置出口富氧气体氧浓度可达93%以上,耗氧模拟精度优于5%,基本不消耗密封舱内的其它气体成分,能够较好地模拟人体对氧气的消耗。结果表明:分子筛耗氧模拟方法精度高,对密封舱内气体成分影响小,装置工作稳定性好,适用于长期载人航天任务中密封舱环境参数控制能力的研究。  相似文献   

19.
用人工神经网络技术,对波音747-200型飞机的JT9D发动机的故障诊断进行了研究,并构成了诊断装置。该研究使用北京飞机维修工程有限公司提供的发动机性能监控数据央脱机后根据性能排队情况艇经验推定法,对发动机的一些常见故障和突发性故障进行了诊断。在诊断过程中,首先搜集发动机的故障状态数据,并对这些数据进行归纳选择,制成了诊断用的教师信号“故障模型”,通过神经网络系统对教师信号的学习,在一定范围内,对  相似文献   

20.
为研究排气扩压器流动特性对高空舱后舱压力控制的影响,采用ANSYS191对排气扩压器进行数学建模和流场数值模拟分析,揭示其内部实际流动的物理过程;在次流质量流量为20 kg/s时,数值模拟不同排气扩压器背压和主流流量时后舱压力的变化规律,并通过样条插值得到排气扩压器背压、主流流量和后舱压力三者关系模型;建立高空舱后舱压力控制系统仿真模型,分析在不同调节模式和不同控制方法下排气扩压器流动特性对压力调节的影响。结果表明:发动机喷嘴出口处速度最大,混合后速度迅速下降,下降了约88%,而压力沿着排气扩压器轴向逐渐增大,最后趋于边界值。在发动机过渡态试验中,排气扩压器流动特性对后舱压力控制系统扰动很大,线性PID(proportion integration differentiation)控制难以保证后舱压力高精度、强抗扰的调节品质要求,而非线性PID控制不仅能减小排气扩压器流动特性对压力调节的影响,抑制发动机流量扰动,而且能保证瞬态响应快,超调量小,调节精度高。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号