首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 507 毫秒
1.
Energy coupling between the solar wind and the magnetosphere   总被引:13,自引:0,他引:13  
This paper describes in detail how we are led to the first approximation expression for the solar wind-magnetosphere energy coupling function , which correlates well with the total energy consumption rate U T of the magnetosphere. It is shown that is the primary factor which controls the time development of magnetospheric substorms and storms. The finding of this particular expression indicates how the solar wind couples its energy to the magnetosphere; the solar wind and the magnetosphere constitute a dynamo. In fact, the power P generated by the dynamo can be identified as by using a dimensional analysis. Furthermore, the finding of indicates that the magnetosphere is closer to a directly driven system than to an unloading system which stores the generated energy before converting it to substorm and storm energies. Therefore, the finding of and its implications have considerably advanced and improved our understanding of magnetospheric processes. The finding of has also led us to a few specific future problems in understanding relationships between solar activity and magnetospheric disturbances, such as a study of distortion of the solar current disk and the accompanying changes of . It is also pointed out that one of the first tasks in the energy coupling study is an improvement of the total energy consumption rate U T of the magnetosphere. Specific steps to be taken in this study are suggested.  相似文献   

2.
Information can be obtained from energetic particle measurements through the chemical composition, energy spectrum, directional anisotropy, temporal and spatial intensity variations. This is equivalent to saying that there is a distribution functionf k(p,r,t) wherek corresponds to thekth particle species of momentump at positionr and timet.Particle transport is described by the Boltzmann equation, and because the densities are generally low in the case of cosmic rays or energetic solar flare particles, collective transport effects can be neglected. In the absence of magnetospheric motion it is relatively easy to treat the problems of particle transport as simple propagation of charged particles in a stationary magnetic field configuration using, for instance, trajectory calculations in model fields. The method here is to use correlated measurements of the particle distribution at two points along a dynamic trajectory, and in this way to learn something about the geomagnetic field. This approach provides a good basis from which to study magnetospheric dynamics. If the magnetosphere moves, large scale electric fields, turbulent electromagnetic fields and sources and sinks affect the propagation of energetic particles considerably. These effects change the distribution functionf k(p,r,t) and can thus be detected.In this paper, we shall show the importance of the single particle approximation (trajectories in a reference field) in forming the basis of our understanding of the quiet-time penetration of cosmic rays into the magnetosphere, we shall consider the steady dynamics such as wave-particle inter-action and field line reconnection, which is believed to exist nearly all the time, and finally we shall review the work which has been done in the much more complex and less well-understood field of impulsive dynamics such as geomagnetic storms and substorms. This last topic is only just beginning to be investigated in detail, and it is hoped that the study of impulsive dynamics, using energetic particles, may be as successful as the study of the quiet magnetosphere and the steady dynamics.  相似文献   

3.
The paper reviews various approaches to the problem of evaluation and numerical representation of the magnetic field distributions produced within the magnetosphere by the main electric current systems including internal Earth's sources, the magnetopause surface current, the tail plasma sheet, the large-scale systems of Birkeland current, the currents due to radiation belt particles, and the partial ring current circuit. Some basic physical principles as well as mathematical background for development of magnetospheric magnetic field models are discussed.A special emphasis is placed on empirical modeling based on datasets created from large bodies of spacecraft measurements. A review of model results on the average magnetospheric configurations and their dependence on the geomagnetic disturbance level and the state of interplanetary medium is given. Possibilities and perspectives for elaborating the instantaneous models capable of evaluating a current distribution of magnetic field and force line configuration based on a synoptic monitoring the intensity of the main magnetospheric electric current systems are also discussed. Some areas of practical use of magnetospheric models are reviewed in short. Magnetospheric plasma and energetic particle measurements are considered in the context of their use as an independent tool for testing and correcting the magnetic field models.  相似文献   

4.
Høg  E.  Pagel  B.E.J.  Portinari  L.  Thejll  P.A.  Macdonald  J.  Girardi  L. 《Space Science Reviews》1998,84(1-2):115-126
The primordial helium abundance YP is important for cosmology and the ratio Y/Z of the changes relative to primordial abundances constrains models of stellar evolution. While the most accurate estimates of YP come from emission lines in extragalactic H II regions, they involve an extrapolation to zero metallicity which itself is closely tied up with the slope Y/Z. Recently certain systematic effects have come to light in this exercise which make it useful to have an independent estimate of Y/Z from fine structure in the main sequence of nearby stars. We derive such an estimate from Hipparcos data for stars with Z Z and find values between 2 and 3, which are consistent with stellar models, but still have a large uncertainty.  相似文献   

5.
Livio  Mario 《Space Science Reviews》1997,82(3-4):389-406
The morphologies of nebulae, as revealed by HST observations are presented. Mechanisms for the formation of axisymmetric and point-symmetric nebulae are reviewed. Critical observations that can test the models presented in this paper are suggested.  相似文献   

6.
The magnetogram inversion technique (MIT) is based upon recordings of geomagnetic variations at the worldwide network of ground-based magnetometers. MIT ensures a calculation of a global spatial distribution of the electric field, currents and Joule heating in the ionosphere. Variant MIT-2 provides, additionally, continuous monitoring of the following parameters: Poynting vector flux from the solar wind into the magnetosphere (); power, both dissipated and accumulated in the magnetosphere; magnetic flux in the open tail; and the magnetotail length (l T) (distance between the dayside and nightside neutral points in the Dungey model). Using MIT-2 and data of direct measurements in the solar wind, an analysis is made of a number of substorms, and a new scenario of substorms is suggested. The scenario includes the convection model, the model with a neutral line and the model of magnetosphere-ionosphere coupling (outside the current sheet), i.e., the three known models. A brief review is given of these and some other substorms models. A new element in the scenario is the strong positive feedback in the primary generator circuit, which ensures growth of the ratio = / Aby an order of magnitude or more during the substorms. Here Ais the Pointing vector flux in the Akasofu-Perrault approximation, i.e., without the feedback taken into account. The growth of during the substorm is caused only by the feedback effect. It is assumed that the feedback arises due to an elongation of the magnetotail, i.e., a growth of l Tby a factor of (23) during the substorm.In the active phase of substorm, a part (the first active phase) has been identified, where the principal role in the energetics is played by the feedback mechanism and the external energy source (although the internal source plus reconnection inside the plasma sheet make a marked contribution). In the second active phase (expansion) the external generator (solar wind) is switched off, and the main role is now played by the internal energy source (the tail magnetic field and ionospheric wind energy).Models of DP-2 DP-1 transitions are also considered, as well as the magnetospheric substorm-solar flare analogy.  相似文献   

7.
Our knowledge of the interplanetary medium is outlined and its frictionless interaction with the geomagnetic cavity, first discussed by Chapman and Ferraro, is described. An important feature of this interaction is the interplanetary field which is compressed and may possibly lead to the formation of a shock wave.The possibility of frictional interaction between the solar wind and the cavity is discussed; an effect which appears to cause friction is the instability of interpenetrating ion-electron streams. This effect will also cause strong heating and trapping of ions and the generation of electromagnetic waves.The theory of propagation of geomagnetic disturbances in the magnetosphere and ionosphere is reviewed, first in general terms and than for some of the various components of a geomagnetic storm.Sea-level disturbances are divided into stormtime (Dst) and other (DS) components and also into different phases and the experimental data is reviewed. Theories of Dst, including the ringcurrent theory and magnetic tail theory are discussed and compared. Attempts to explain the complex DS field comprise the magnetospheric dynamo theory and the asymmetrical ring-current theory; these are compared in the light of experimental evidence.Motions of plasma and field lines in the magnetosphere are discussed in general terms: there are motions which deform the field and there are interchange motions. The former are opposed by Earth currents; the latter are not. The two types of motion are coupled through ionospheric Hall conductivity. Theories of the DS field in terms of the two types of motion are described; in particular motions caused by frictional interaction with the solar wind are discussed. These motions cause a helical twist in the field lines which propagates into the polar ionosphere as a hydromagnetic wave. In the ionosphere the motions of the field lines drive currents (moving-field dynamo) which cause the DS field.Drifts of neutral ionization in the lower ionosphere lead to localized accumulations which play a vital part in storm and auroral theory: they cause polarization fields which change the DS current system; they react on the magnetospheric motions to cause particle acceleration and precipitation.Auroral morphology and theories are briefly reviewed; the solar wind friction theory, although far from complete may provide a start. Further development should take the form of determining ionospheric drifts, polarization electric fields and consequent magnetospheric effects.A brief discussion is given of some associated effects: growth and decay of belts of geomagnetically trapped corpuscules; increase in ionospheric absorption of radio waves and lower-level X-ray production, ionospheric storm and high-latitude irregularities, micropulsations, VLF and ELF radio emissions from the magnetosphere, atmospheric heating and wave generation.  相似文献   

8.
We review recent progress in the understanding of the IMF control on the Earth's magnetosphere through the reconnection process. Major points include, (1) the identification of the magnetopause structure under the southward IMF polarity to be the rotational discontinuity and the resulting inference that the reconnection line is formed in the equatorial region, and (2) the confirmation from several observational aspects that under the northward IMF the reconnection takes place in the polar cusp. The point (1) is consistent with the observed correlations of geomagnetic indices with IMF but raises an important theoretical issue, and the point (2) is accompanied by an interesting issue of explaining why the polar cap electron precipitation is more energetic under such IMF conditions. Critical studies have reaffirmed the view that the energy supplied by reconnection is partly transported directly to the ionosphere to drive the DP-2 type current system but at the same time it is partly stored in the magnetic field of the tail to be unloaded 0.5 1 hr later to produce the expansion phase of substorm.Presented at the Fifth International Symposium on Solar-Terrestrial Physics, held at Ottawa, Canada, May 1982.  相似文献   

9.
We review work on diffusion coefficients of energetic particles with an attempt to extract implications on their behaviour at high latitudes. In the ecliptic plane results from solar energetic particle propagation between the Sun and about 5 AU can be described by an effective radial mean free path r which is approximately constant as a function of distancer. When particle propagation in three dimensions in the heliosphere is considered it is not sufficient to consider r only. Jovian electrons can be used as probes to determine the parameters of three-dimensional diffusion. In the polar regions diffusion is dominated by its parallel component. Some predictions how should vary with latitude are discussed. For different choices of this variation we present expectations for intensity-time profiles of solar particle events during the Ulysses polar passages.  相似文献   

10.
The Mighei meteorite is generally considered to be unique amongst the group of stony meteorites known as the carbonaceous chondrites in a number of scientifically interesting aspects. The meteorite, which is related to the type II carbonaceous chondrites of Wiik's classification (or type C2 according to van Schmus and Wood), contains extraterrestrial organic compounds (general C content = 2.6%), and extraterrestrial water associated with iron-magnesium silicate crystals (general H2O content=12%).The meteorite fall occurred in 1889, over a region in the Ukraine. In structure it was found to be a chondritic meteorite, having chondrules of order 0.5 mm in size. The composition of the meteorite is inhomogeneous. In mineralogical terms the meteorite is composed of two paragenetic associations, described as high and low temperature, which are generally distributed in equal proportions. The low temperature associations are a characteristic only of carbonaceous chondrites: the minerals involved are chlorites or the serpentine group, carbonates, free sulphur, sulphates and low temperature glass. In chemical terms the Mighei meteorite is somewhat enriched in the volatile elements S, C, H, N, O in comparison to the usual chondrites. These elements are found in different forms and the isotopic composition of the elements S, C, O, is different for different phases. The meteorite is also rich in a number of other fairly volatile element admixtures such as: B, F, Cl, Cu, Zn, Ga, Ge, Br, In, Te, I, Hg, Tl, Pb, Bi, and contains somewhat enhanced initial quantities of rare gases.The organic compounds are of an abiological nature in the meteorite and are located in finely dispersed distributions between the chondrules. They are present in the main, as polymerized organic compounds. Among these polymers there are gaseous hydrocarbons (saturated and non-saturated) and extractable organic compounds. In the latter condition the following organic compounds have been identified: aliphatic hydrocarbons, aromatic hydrocarbons, amino acids and others. The meteorite contains free organic radicals (1017 centres g–1), uncoupled -electrons which are delocalized in the aromatic structure of the polymeric matter.The radiogenic age of the meteorite has been determined as from 2.4 to 3.2 × 109 yr (by the K-Ar method) and up to 4.54 × 109 yr (by the Rb-Sr method), while the radiation age is put at 0.5 to 2.4 × 106 yr. Details of the meteorite structure give evidence of at least two processes in its formation; the accretion of the meteoritic matter, together with the simultaneous formation of organic compounds could have taken place at temperatures between 450 and 300 K.Reported on the XIV Meteoritic Conference, December 17, 1970, Moscow.  相似文献   

11.
The Voyager 1 and 2 spacecraft include instrumentation that makes comprehensive ion (E 28 keV) and electron (E 22 keV) measurements in several energy channels with good temporal, energy, and compositional resolution. Data collected over the past decade (1977–1988), including observations upstream and downstream of four planetary bow shocks (Earth, Jupiter, Saturn, Uranus) and numerous interplanetary shocks to 30 AU, are reviewed and analyzed in the context of the Fermi and shock drift acceleration (SDA) models. Principal findings upstream of planetary bow shocks include the simultaneous presence of ions and electrons, detection of tracer ions characteristic of the parent magnetosphere (O, S, O+), power-law energy spectra extending to 5 MeV, and large (up to 100:1) anisotropies. Results from interplanetary shocks include observation of acceleration to the highest energies ever seen in a shock ( 22 MeV for protons, 220 MeV for oxygen), the saturation in energy gain to 300 keV at quasi-parallel shocks, the observation of shock-accelerated relativistic electrons, and separation of high-energy (upstream) from low-energy (downstream) populations to within 1 particle gyroradius in a near-perpendicular shock. The overall results suggest that ions and electrons observed upstream of planetary bow shocks have their source inside the parent magnetosphere, with first order Fermi acceleration playing a secondary role at best. Further, that quasi-perpendicular interplanetary shocks accelerate ions and electrons most efficiently to high energies through the shock-drift process. These findings suggest that great care must be exercised in the application of concepts developed for heliosphere shocks to cosmic ray acceleration through shocks at supernova remnants.  相似文献   

12.
This article reviews theories and observations related to effects produced by finite (and large) Larmor radii of charged particles in the magnetosphere. The FLR effects depend on =r H /L, wherer H is the Larmor radius andL is the spatial scale for field/plasma inhomogeneity. The parameter is a basic expansion parameter for most equations describing plasma dynamics in the magnetosphere. The FLR effects enter naturally the drift approximation for particle motion and represent also non-ideal MHD terms in the fluid formalism. The linear and higher order terms in lead to charge separation, energization of particles, and produce viscosity without collisions. The FLR effects introduce also important corrections to the dispersion relations for MHD waves and drift instabilities. Expansion of plasma into magnetic field leads to filamentation of the plasma boundary and to creation of structures with thickness less than an ion gyroradius. Large Larmor radius effects (1) in curved magnetic field geometry lead to stochastic behaviour of particle trajectories and to deterministic chaos. The tiny scale of the electron and ion gyroradii does not necessarily mean that FLR/LLR phenomena have negligible effect on the macroscopic dynamics and energetics of the whole magnetosphere. On the contrary, the small scale gyro-effects may provide the physical mechanism for gyroviscous coupling between the solar wind and the magnetosphere, the mechanism for triggering disruption of the magnetotail current layer, and the mechanism for parallel electric field that accelerate auroral particles.  相似文献   

13.
We study the simultaneous occurrence of ULF waves observed on board GEOS and at two of its conjugated stations: Husafell (Iceland) and Skibotn (Norway). We try to deduce some properties of the regions in which these waves are generated. The few number of simultaneous observations of pearl events indicates that such structured oscillations can occur only in specific conditions which are not met generally at the geostationary altitude. We introduce a new method for measuring time delays between the satellite and the ground. We show that this time is much higher than it would be expected from a simple extrapolation of measurements done at lower latitudes on structured events.  相似文献   

14.
We propose a technique to derive the coronal density irregularity factor , wheren is the electron density. The absolute photometric comparison between the intensity of UV lines and the white-light K-coronal polarized brightness (pB) provides an unique constraint on the inhomogeneity of the corona. The ratio of the measured H I Lyman (Ly-) line intensity to the resonant-scattering dominated H I Lyman (Ly-) intensity can be used to extract the collisonal component of the Ly-. This component yields an estimate of . The quantity is then obtained from white-light K-coronal measurements. The use of lines of the same atomic species minimizes the effects due to outflow velocities (i.e., Doppler dimming), and reduces the errors introduced by the uncertainties in the ionization balance, the atomic parameters, and the solar abundances. The UVCS/SOHO unique capability of performing cotemporal and cospatial measurements of the Ly- and Ly- lines, and ofpB makes this instrument ideal for implementing this technique.  相似文献   

15.
Climate is discussed as an integral part of System Earth, determined by a complex interplay of numerous geological, biological and solar processes. The historical and geological record of changing climate and atmospheric CO2 pressure does not support the current popular vision that this greenhouse gas is the dominant climate controlling agent. When empirically ante post tested against past global climate changes, the forecasts of the climate models mainly based on forcing by atmospheric CO2 are not borne out. On the other hand, recent studies show that solar variability rather than changing CO2 pressure is an important, probably the dominant climate forcing factor.  相似文献   

16.
The radial pulsations of very luminous, low-mass models (L/M 104, solar units), which are possible representatives of the R CrB stars, have been examined. These pulsations are extremely nonadiabatic. We find that there are in some cases at least one extra (strange) mode which makes interpretation difficult. The blue instability edges are also peculiar, in that there is an abrupt excursion of the blue edge to the blue for L/M sufficiently large. The range of periods of the model encompasses observed periods of the Cepheid-like pulsations of actual R CrB stars.  相似文献   

17.
《Space Science Reviews》1989,49(1-2):125-138
The Gamma-1 telescope has been developed through a collaboration of scientists in the USSR and France in order to conduct -ray astronomical observations within the energy range from 50 to 5000 MeV. The major characteristics of the telescope were established by Monte-Carlo simulations and calibrations made with the aid of electron and tagged -ray beams produced by an accelerator, and these have been found to be as follows: the effective area for photons coming along the instrument's axis varies from about 50 cm2 at E = 50 MeV to approximately 230 cm2 at E 300 MeV; the angular resolution (half opening of the cone embracing 68% events) is equal to 2.7° at E = 100 MeV, and 1.8° at E = 300 MeV; the energy resolution (FWHM) varies from 70% to 35% as the energy of the detected photons increases from 100 to 550 MeV; the telescope's field-of-view at the half-sensitivity level is 300–450 square degrees depending upon the spectrum of the detected radiation, and the event selection logic. Proceeding from the thus obtained characteristics it is demonstrated that a point source producing a photon flux J (E 100 MeV) = 3 × 10-7 cm-2 s-1, can be detected with a 5 significance by observing it during 106 s at the level of the Cygnus background, and a source having intensity J (E 100 MeV) = 10-6 cm-2 s-1 can be detected to within a mean square positional accuracy of about 15.  相似文献   

18.
The double probe, floating potential instrumentation on ISEE-1 is producing reliable direct measurements of the ambient DC electric field at the bow shock, at the magnetopause, and throughout the magnetosheath, tail plasma sheet and plasmasphere. In the solar wind and in middle latitude regions of the magnetosphere spacecraft sheath fields obscure the ambient field under low plasma flux conditions such that valid measurements are confined to periods of moderately intense flux. Initial results show: (a) that the DC electric field is enhanced by roughly a factor of two in a narrow region at the front, increasing B, edge of the bow shock, (b) that scale lengths for large changes in E at the sub-solar magnetopause are considerably shorter than scale lengths associated with the magnetic structure of the magnetopause, and (c) that the transverse distribution of B-aligned E-fields between the outer magnetosphere and ionospheric levels must be highly complex to account for the random turbulent appearance of the magnetospheric fields and the lack of corresponding time-space variations at ionospheric levels. Spike-like, non-oscillatory, fields lasting <0.2 s are occasionally seen at the bow shock and at the magnetopause and also intermittently appear in magnetosheath and plasma sheet regions under highly variable field conditions. These suggest the existence of field phenomena occurring over dimensions comparable to the probe separation and c/pe (the characteristic electron cyclotron radius) where pe is the electron plasma frequency.  相似文献   

19.
Since the baryon-to-photon ratio 10 is in some doubt at present, we ignore the constraints on 10 from big bang nucleosynthesis (BBN) and fit the three key cosmological parameters (h, M, 10) to four other observational constraints: Hubble parameter (ho), age of the universe (to), cluster gas (baryon) fraction (fo fGh3/2), and effective shape parameter (o). We consider open and flat CDM models and flat CDM models, testing goodness of fit and drawing confidence regions by the 2 method. CDM models with M = 1 (SCDM models) are accepted only because we allow a large error on ho, permitting h < 0.5. Open CDM models are accepted only for M 0.4. CDM models give similar results. In all of these models, large 10 ( 6) is favored strongly over small 10 ( 2), supporting reports of low deuterium abundances on some QSO lines of sight, and suggesting that observational determinations of primordial 4He may be contaminated by systematic errors. Only if we drop the crucial o constraint are much lower values of M and 10 permitted.  相似文献   

20.
A brief summary of the main results of magnetospheric ion composition measurements in general is first presented. PROGNOZ-7 measurements in the nightside plasma mantle are then described and analyzed. Some of the results are the following: In the nightside mantle not too far from midnight the properties of the mantle are sometimes consistent with the open magnetosphere model. However during most magnetic storm situations O+ ions appear in the mantle in large proportions and with high energies. The acceleration process affecting the ions has been found in several cases to give equal amounts of energy to all ions independent of mass. Along the flanks of the magnetosphere the flow of the plasma is often low or absent. The O+ content is high (up to 20%) and the energy spectrum of both ions and electrons may be very hot, even up to the level of the ring current plasma in the keV range.The O+ content in the plasma mantle is positively correlated with the magnetospheric activity level. The mantle, however, does not appear to be the dominating source for the storm time ring current. Direct acceleration of ionospheric ions onto the closed field lines of the plasma sheet and ring current is most likely the main source. The magnetopause on the nightside and along the flanks of the magnetosphere appears to be a fairly solid boundary for mantle ions of ionospheric origin. This is especially evident during periods with high geomagnetic activity, when the mantle is associated with fairly strong fluxes of O+ ions.An interesting observation in most of the mantle passages during geomagnetically disturbed periods is the occurrence of intense, magnetosheath like, regions deep inside the mantle. In some cases these regions with strong antisunward flow and with predominant magnetosheath ion composition was observed in the innermost part of the mantle, i.e. marking a boundary region between the lobe and the mantle. These magnetosheath penetration events are usually associated with strong fluxes of accelerated ionospheric ions in nearby parts of the mantle. Evanescent penetration regions with much reduced flow properties are frequently observed in the flank mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号