首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
A short review is given on the history of the peculiar variable object Car and on a number of relevant references describing and discussing its physical characteristics and behaviour, based on different types of observational techniques. The star is known to be variable since the 17th century. The excessive mass loss to which it was subject during the 19th century is now visible as an ellipsoidal reflection nebula of 15 diameter: the so-called homunculus. The remainder of the paper is spent on different kinds of problems partly based on the results of a decade of photometric monitoring in the VBLUW photometric system of Walraven. Foreground reddening and reddening by dust in the homunculus are determined and amount to E(B - V) J = 0 50 and < 6, respectively. Scanning of the homunculus revealed an estimate for the photometric characteristics of the central object, which presumably consists of a massive hot star surrounded by a cooler gas envelope. The total luminosity is derived using fluxes of various sources in the wavelength region 0.15 < < 175 n resulting in M bol = - 12 3 ± 0 2. The total observed flux corrected for foreground extinction corresponds to a star with R 96 R if T eff 30 000 K. The mass may be near 150 M . The excess luminosity in 1843, when the star was presumably bolometrically at least 2 5 brighter than at present, may have been caused by envelope-energized pulsations when the star's luminosity was close to its Eddington limit. The temperature should then have been 50 000 K. The mass loss rate, during the excess luminosity phase lasting 30 yr, is estimated to amount to M 4 × 10-3 M yr-1. At present the mass loss may be M 10-4M yr-1. Since the homunculus is mainly built up from material expelled in the 30 yr interval (from 1830 to 1860), its total mass amounts to M hom 0.15 M . The historical observations of the colours of Car and a comparison with the characteristics of S Dor type stars, suggest that Car was subject to a number of S Dor type phases similar to those of P Cyg (in the 17th century), S Dor and others. A satisfactory explanation is found for the complete historical light curve. The decrease in light after the 1843 maximum by 9 m , presumably consists of a fading of the luminosity excess and the S Dor effect by 2 5 and 3m, respectively, and a 3 5 extinction by circumstellar dust. The small amplitude light variations which Car showed during the last decade, were studied with the aid of the variations of the Balmer jump. They are presumably caused by temperature variations of the central star.Percy and Welch (1983) (Publ. Astron. Soc. Pacific 95, 491) have observed P Cyg on a number of nights in 1982 and found for the photometric variations a time scale of 30 to 50 days and an amplitude of 0 . m 15.Based partly on observations collected at the ESO, La Silla, Chile.  相似文献   

2.
If the path of the neutral line on the coronal source surface is expressible as a singlevalued function (colatitude vs longitude ), then Fourier analysis of ctn with respect to leads to a simple algorithm for realistically mapping the neutral line outward to model the heliospheric current sheet (HCS) at distancesr1 AU. To be compatible with MHD, the source surface used for this mapping should be prolate (aligned with dipole axis) rather than spherical. Orientation of the Sun's magnetic-dipole moment is indicated by them=1 Fourier amplitude (a 1 sin +b 1 cos ) of ctn on the source surface. Physical features (including the neutral line) on a prolate source surface intrinsically map to lower dipole latitudes atr1 AU in the heliosphere, and Ulysses observations of a unipolar field at latitudes beyond 30°S (when the neutral line on the source surface still reached 39°S) confirm the expected geometry.  相似文献   

3.
In this paper we discuss theoretical expressions, determining the difference of Doppler shifts of various coherent radiowave frequencies emitted by a radiator moving in the ionosphere or interplanetary medium. The rotating Doppler effect (Faraday effect) caused by the Doppler shifts ±H of the ordinary and extraordinary waves is also considered. In a three-dimensional inhomogeneous ionosphere, stationary in time (N/t = 0), is determined in the general case, by an equation with three variables. The equation for proper depends only on the local value of the electron concentration N c around the radiator and on integral values, determining, by means of additional calculations, the angle of refraction or its components, the horizontal gradients of electron concentration N/x and N/y, and in some cases, the integral electron concentration 0 zcN dz. We describe the analysis of the measurements, made with the satellites Cosmos I, II and partially XI, assuming that N/t = N/y = 0, with a two variables equation. The expected errors are considered. The results coincide well for different points (Moscow, The Crimea, Sverdlovsk) and thus agree with the measurements of H and with height-frequency ionospheric characteristics. The curve giving electron concentration versus height N (z) in the outer ionosphere (above the maximum of F2), shows a new maximum higher than the main maximum of the ionosphere N MF2 at 120–140 km. At this maximum the value of N (z) is (0.9–0.95) N MF2. The new data on the large-scale horizontal inhomogeneities of the ionosphere, exceed the previous ones by about a factor 10. By means of the irregular variations of the spectrum W() of the inhomogenous formation is determined. Three unknown constant maxima with values 16 to 18 km, 28 to 32 km and 100 to 120 km are found. The spectrum W () mainly characterizes the local properties of the ionosphere along the orbit of the satellite.  相似文献   

4.
We propose that the appropriate instability to trigger a substorm is a tailward meander (in the equatorial plane) of the strong current filament that develops during the growth phase. From this single assumption follows the entire sequence of events for a substorm. The main particle acceleration mechanism in the plasma sheet is curvature drift with a dawn-dusk electric field, leading to the production of auroral arcs. Eventually the curvature becomes so high that the ions cannot negotiate the sharp turn at the field-reversal region, locally, at a certain time. The particle motion becomes chaotic, causing a local outward meander of the cross-tail current. An induction electric field is produced by Lenz's law, E ind=–A/t. An outward meander with B z>0 will cause E×B flow everywhere out from the disturbance; this reaction is a macroscopic instability which we designate the electromotive instability. The response of the plasma is through charge separation and a scalar potential, E es=–. Both types of electric fields have components parallel to B in a realistic magnetic field. For MHD theory to hold the net E must be small; this usually seems to happen (because MHD often does hold), but not always. Part of the response is the formation of field-aligned currents producing the well-known substorm current diversion. This is a direct result of a strong E ind (the cause) needed to overcome the mirror force of the current carriers; this enables charge separation to produce an opposing electrostatic field E es (the effect). Satellite data confirm the reality of a strong E in the plasma sheet by counter-streaming of electrons and ions, and by the inverse ion time dispersion, up to several 100 keV. The electron precipitation is associated with the westward traveling surge (WTS) and the ion with omega () bands, respectively. However, with zero curl, E es cannot modify the emf =Edl=–dM/dt of the inductive electric field E ind (a property of vector fields); the charge separation that produces a reduction of E must enhance the transverse component E . The new plasma flow becomes a switch for access to the free energy of the stressed magnetotail. On the tailward side the dusk-dawn electric field with EJ<0 will cause tailward motion of the plasma and a plasmoid may be created; it will move in the direction of least magnetic pressure, tailward. On the earthward side the enhanced dawn-dusk induction electric field with EJ>0 will cause injection into the inner plasma sheet, repeatedly observed at moderate energies of 1–50 keV. This same electric field near the emerging X-line will accelerate particles non-adiabatically to moderate energies. With high magnetic moments in a weak magnetic field, electrons (ions) can benefit from gradient and curvature drift to attain high energies (by the ratio of the magnetic field magnitude) in seconds (minutes).  相似文献   

5.
Magnetic coordinates   总被引:4,自引:0,他引:4  
The definitions and properties of the magnetic coordinates B, L, K, 0, R, and are reviewed. The roles these parameters play in the study of geomagnetically trapped particles are discussed in detail. The intrinsic accuracy of the magnetic shell parameter L is examined as are the accuracies which are desired, available, and possible. A plea is made for the adoption of standard methods of presenting results.Paper presented at Advanced Study Institute of IIT Research Institute, Bergen, Norway, August 16 1965.  相似文献   

6.
Recent studies suggest that when magnetohydrodynamic (MHD) turbulence is excited by stirring a plasma at large scales, the cascade of energy from large to small scales is anisotropic, in the sense that small-scale fluctuations satisfy the inequality k k , where k and k are, respectively, the components of a fluctuations wave vector and to the background magnetic field. Such anisotropic fluctuations are very inefficient at scattering cosmic rays. Results based on the quasilinear approximation for scattering of cosmic rays by anisotropic MHD turbulence are presented and explained. The important role played by molecular-cloud magnetic mirrors in confining and isotropizing cosmic rays when scattering is weak is also discussed.  相似文献   

7.
Measurements of the shape of the ultraviolet spectrum from B stars are compared with the theoretical spectra predicted from a homogeneous series of eight model atmospheres which are known to be close to a state of radiative equilibrium and to give a good representation of the ordinarily observed spectral region. The broad-band photometer measurements of Byram, Chubb, and Friedman in the region 1314 indicate that the stars become brighter in the ultraviolet as their temperature increases. The theoretical spectra reproduce this trend. However, the theoretical spectra are about three times as bright at 1314 relative to their brightness at 5560 as is observed.The spectral observations at 50Å resolution of Stecher and Milligan of six absorption-line stars are compared in detail with theoretical spectra. The observed shape of the spectrum is reproduced well by the models from 2600 to longer wavelengths. At wavelengths shorter than 2600 Å, the observed fluxes from B stars are less than the predicted fluxes. At 2000 the deficiency is between a factor two and a factor four. The spectrum of Canis Majoris is observed to have a different shape from that found for four other early-type stars. In the case of Canis Majoris the deficiency at 2000 is about a factor 13.The proper manner in which to compare theory and observation is discussed and some astrophysical terminology is explained. Theoretical fluxes, , are given in Table 1 for eight early B type model atmospheres at wavelengths between the Lyman limit and 6251. These fluxes have been computed without consideration of the opacity due to line blanketing. It is shown that line blanketing can probably account for the differences noted between predicted and observed ultra-violet spectra of B stars. It is not necessary at present to invoke unusual sources of opacity in the stellar atmosphere or in the space between the star and the earth in order to explain the observations. Spectra of B stars in the 2000 region at sufficient resolution to show the line spectrum would clarify the problem.  相似文献   

8.
We propose a technique to derive the coronal density irregularity factor , wheren is the electron density. The absolute photometric comparison between the intensity of UV lines and the white-light K-coronal polarized brightness (pB) provides an unique constraint on the inhomogeneity of the corona. The ratio of the measured H I Lyman (Ly-) line intensity to the resonant-scattering dominated H I Lyman (Ly-) intensity can be used to extract the collisonal component of the Ly-. This component yields an estimate of . The quantity is then obtained from white-light K-coronal measurements. The use of lines of the same atomic species minimizes the effects due to outflow velocities (i.e., Doppler dimming), and reduces the errors introduced by the uncertainties in the ionization balance, the atomic parameters, and the solar abundances. The UVCS/SOHO unique capability of performing cotemporal and cospatial measurements of the Ly- and Ly- lines, and ofpB makes this instrument ideal for implementing this technique.  相似文献   

9.
We review work on diffusion coefficients of energetic particles with an attempt to extract implications on their behaviour at high latitudes. In the ecliptic plane results from solar energetic particle propagation between the Sun and about 5 AU can be described by an effective radial mean free path r which is approximately constant as a function of distancer. When particle propagation in three dimensions in the heliosphere is considered it is not sufficient to consider r only. Jovian electrons can be used as probes to determine the parameters of three-dimensional diffusion. In the polar regions diffusion is dominated by its parallel component. Some predictions how should vary with latitude are discussed. For different choices of this variation we present expectations for intensity-time profiles of solar particle events during the Ulysses polar passages.  相似文献   

10.
Høg  E.  Pagel  B.E.J.  Portinari  L.  Thejll  P.A.  Macdonald  J.  Girardi  L. 《Space Science Reviews》1998,84(1-2):115-126
The primordial helium abundance YP is important for cosmology and the ratio Y/Z of the changes relative to primordial abundances constrains models of stellar evolution. While the most accurate estimates of YP come from emission lines in extragalactic H II regions, they involve an extrapolation to zero metallicity which itself is closely tied up with the slope Y/Z. Recently certain systematic effects have come to light in this exercise which make it useful to have an independent estimate of Y/Z from fine structure in the main sequence of nearby stars. We derive such an estimate from Hipparcos data for stars with Z Z and find values between 2 and 3, which are consistent with stellar models, but still have a large uncertainty.  相似文献   

11.
Climate is discussed as an integral part of System Earth, determined by a complex interplay of numerous geological, biological and solar processes. The historical and geological record of changing climate and atmospheric CO2 pressure does not support the current popular vision that this greenhouse gas is the dominant climate controlling agent. When empirically ante post tested against past global climate changes, the forecasts of the climate models mainly based on forcing by atmospheric CO2 are not borne out. On the other hand, recent studies show that solar variability rather than changing CO2 pressure is an important, probably the dominant climate forcing factor.  相似文献   

12.
Theoretical logN-logS distributions and (V/V max) tests of gamma-ray bursts in the model of coalescence of neutron star (NS+NS) and/or NS+black hole (NS+BH) binaries are calculated for a flat Universe (=1) with different values of the cosmological constant and under various assumptions about the star formation history. The observed logN-logS distribution and value of (V/V max)=0.33 for 411 bursts with knownC max/C lim from the 2d BATSE catalogue are best fitted with a model for which = 0.2 and primary star formation occurs at redshiftsz5–6.  相似文献   

13.
There is a warm tenuous partially ionized cloud (T104 K,n(HI)0.1 cm–3,n(Hii 0.22–0.44 cm–3) surrounding the solar system which regulates the environment of the solar system, determines the structure of the heliopause region, and feeds neutral interstellar gas into the inner solar system. The velocity (V–20 km s–1 froml335°,b0° in the local standard of rest) and enhanced Caii and Feii abundances of this cloud suggest an origin as evaporated gas from cloud surfaces in the Scorpius-Centaurus Association. Although the soft X-ray emission attributed to the Local Bubble is enigmatic, optical and ultraviolet data are consistent with bubble formation caused by star formation epochs in the Scorpius-Centaurus Association as regulated by the nearby spiral arm configuration. The cloud surrounding the solar system (the local fluff) appears to be the leading region of an expanding interstellar structure (the squall line) which contains a magnetic field causing polarization of the light of nearby stars, and also absorption features in nearby upwind stars. The velocity vectors of the solar system and local fluff are perpendicular in the local standard of rest. Combining this information with the low column densities seen towards Sirius in the anti-apex direction, and the assumption that the cloud velocity vector is parallel to the surface normal, suggests that the Sun entered the local fluff within the historical past (less than 10 000 years ago) and is skimming the surface of the cloud. Comparison of magnesium absorption lines towards Sirius and anomalous cosmic-ray data suggest the local fluff is in ionization equilibrium.Reason has moons, but moons not hers, Lie mirror'd on her sea, Confounding her astronomers, But, O! delighting me.Ralph Hodgson  相似文献   

14.
Present status of the theories for presupernova evolution and triggering mechanisms of supernova explosions are summarized and discussed from the standpoint of the theory of stellar structure and evolution. It is not intended to collect every detail of numerical results thus far obtained, but to extract physically clear-cut understanding from complexities of the numerical stellar models. For this purpose the evolution of stellar cores is discussed in a generalized fashion. The following types of the supernova explosions are discussed. The carbon deflagration supernova of intermediate mass star which results in the total disruption of the star. Massive star evolves into a supernova triggered by photo-dissociation of iron nuclei which results in a formation of a neutron star or a black hole depending on its mass. These two are typical types of the sueprnovae. Between them there remains a range of mass for which collapse of the stellar core is triggered by electron captures, which has been recently shown to leave a neutron star despite oxygen deflagration competing with the electron captures. Also discussed are combustion and detonation of helium or carbon which take place in accreting white dwarfs, and the collapse which is triggered by electron-pair creation in very massive stars.Appendix: Notations A mass number of atomic nucleus - B v(a, b) incomplete beta function - c p specific heat at constant pressure - c p sound velocity - c(sub) center of the star - E e mean energy of an electron captured by nucleus - E n nuclear energy release from unit mass of the nuclear fuel specified by n - E thr threshold energy (9.3) - E thr,0 energy difference between the ground states of daughter nucleus and parent nucleus (9.1) - E energy of gamma ray emitted from daughter nucleus (9.1) - E v mean energy of a neutrino emitted by electron capture (9.1) - f flatness parameter (2.17) - g local gravitational acceleration (2.16) - H atomic mass unit - H p scale height of pressure (2.22) - H (sub) hydrogen-burning shell - k Boltzmann constant - l mixing length of convection - L cr(M r ) local Eddington's critical luminosity (4.3) - L n integrated nuclear energy generation rate by nuclear fuel specified by n - L v neutrino luminosity - L v, cr(M r ) local Eddington's critical neutrino luminosity (11.2) - M (current) mass of a star - m M core mass contained interior to the carbon-burning shell - M Ch Chandrasekhar's limiting mass (9.6) - M H core mass contained interior to the hydrogen-burning shell - M He core mass contained interior to the helium-burning shell - M ms mass of a star at its zero-age min-sequence - M O core mass contained interior to the oxygen-burning shell - M r mass contained interior to a shell at r - M Si core mass contained interior to the silicon-burning shell - M WD mass of white dwarf (7.1) - M 0 normalization factor to the non-dimensional mass (3.3) - M 1 core mass (3.6) - N polytropic index between pressure and density (2.3) - n polytropic index between pressure and temperature (10.1) - N A Avogadro number - N ad adiabatic polytropic index - N e number of electrons in unit mass of matter - NSE nuclear statistical equilibrium - P pressure - ph (sub) photosphere - Q e mass fraction of the envelope exterior of the shell e (2.14) - R stellar radius - r radial distance of a shell - r 0 normalization factor to the non-dimensional radius (3.2) - s specific entropy - S i specific entropy of ions - T temperature - U homology invariant defined by (2.1) - u gas specific internal energy of gas - u rad energy of the radiation field per volume in which unit mass of gas is contained (6.4) - V homology invariant defined by (2.2) - def velocity of deflagration front (6.10) - X concentration by weight of hydrogen - Y concentration by weight of helium - Y e mole number of electrons in one gram of matter (9.7) - Y v mole number of neutrinos in one gram of matter - Z concentration by weight of the elements other than hydrogen and helium - z shock strength (6.6) - 1 (sub) usually denotes the core edge (2.13) - ratio of the mixing length to the scale height of pressure (l/H p ) - ratio of gas pressure to the total pressure - ratio of the specific heats - gD locus of singularity in U-V plane (2.5) - M(H p ) mass contained within unit scale height of pressure (4.4) - ec energy rate by electron captures (9.5) - n nuclear energy generation rate by the nuclear fuel specified by n - v neutrino loss rate - L v (D) neutrino loss rate excluding the neutrinos from the electron captures (9.4) - non-dimensional density (3.1) - P/, not the non-dimensional temperature (2.7) - W Weinberg's angle (5.8) - opacity - v neutrino opacity (11.2) - describes the effect of electron degeneracy in equation of state (2.19) - ec rate of electron capture - mean molecular weight - e mean molecular weight of electrons - e chemical potential of an electron excluding the rest mass (8.1) - i mean molecular weight of ions - non-dimensional radius (3.1) - non-dimensional pressure (3.1) - matter density - cr GR critical density above which the general relativistic instability sets in - cr critical density for reimplosion of the core by beta processes (Section 5) - ign density at the ignition - nse density above which the deflagrated matter results in NSE composition - e non-dimensional entropy of electron-per one electron in units of k(9.2) - ff timescale of free fall (6.2) - h (H p ) timescale of heat transport over unit scale height of pressure (4.4) - n nuclear timescale for a change in temperature (6.1) - non-dimensional mass (3.1) - e chemical potential of an electron in units of kT (8.1)  相似文献   

15.
The Voyager 1 and 2 spacecraft include instrumentation that makes comprehensive ion (E 28 keV) and electron (E 22 keV) measurements in several energy channels with good temporal, energy, and compositional resolution. Data collected over the past decade (1977–1988), including observations upstream and downstream of four planetary bow shocks (Earth, Jupiter, Saturn, Uranus) and numerous interplanetary shocks to 30 AU, are reviewed and analyzed in the context of the Fermi and shock drift acceleration (SDA) models. Principal findings upstream of planetary bow shocks include the simultaneous presence of ions and electrons, detection of tracer ions characteristic of the parent magnetosphere (O, S, O+), power-law energy spectra extending to 5 MeV, and large (up to 100:1) anisotropies. Results from interplanetary shocks include observation of acceleration to the highest energies ever seen in a shock ( 22 MeV for protons, 220 MeV for oxygen), the saturation in energy gain to 300 keV at quasi-parallel shocks, the observation of shock-accelerated relativistic electrons, and separation of high-energy (upstream) from low-energy (downstream) populations to within 1 particle gyroradius in a near-perpendicular shock. The overall results suggest that ions and electrons observed upstream of planetary bow shocks have their source inside the parent magnetosphere, with first order Fermi acceleration playing a secondary role at best. Further, that quasi-perpendicular interplanetary shocks accelerate ions and electrons most efficiently to high energies through the shock-drift process. These findings suggest that great care must be exercised in the application of concepts developed for heliosphere shocks to cosmic ray acceleration through shocks at supernova remnants.  相似文献   

16.
Summary Using values of d, min, and max that Van Riper (1978) has found most promising for a hydrodynamic envelope ejection, we have shown that even a small amount of rotation in the initial core can stop its collapse before nuclear densities are reached. We expected i > 0.02 to produce significant deviations from a spherically symmetric collapse, but have found that i as much as ten times smaller than this will not allow the core to reach densities as high as in the spherical collapse. In no case, however, does the core flatten very much, nor does the value of become very large. Low final 's preclude the formation of an axisymmetric torus. They also indicate that deformation of an iron core into a triaxial configuration or fragmentation of the core during its collapse is an extremely unlikely event. (Note: Classically, must exceed 0.27 before a dynamic instability to non-axisymmetric perturbations is encountered.)The small degree of flattening of the core also suggests that the reduced moment of inertia I of the core will always be relatively small in magnitude and hence that the third time derivative of I, which is proportional to the energy emitted in gravity wave radiation, will not be very significant. Numerically calculated estimates of I- during some of these model evolutions supports this suspicion. If the min and used here are found to be realistic values after the detailed physics of the core collapse is well understood, it is clear that gravitational radiation from a core collapse will be difficult to measure.Finally, we should point out that it is the relatively large values of Ymin (near 4/3) combined with values of d near unity that (a) prevented the core from flattening significantly in these models and (b) prevented the core from reaching high configurations. If realistic values of either one (or both) of these parameters are found to be much smaller in more complete models of the core collapse, then the core will have to become flatter (and denser) before pressure gradients will support it along the rotation axis. All of the conclusions drawn here would be modified accordingly under those circumstances. It should also be noted that in general relativistic models, the critical for spherical collapse is somewhat larger than 4/3 (Van Riper, 1979). Therefore, we predict that when fully general relativistic core collapses are performed including rotation, a given choice of min and i will produce a slightly flatter and slightly denser core than the corresponding model that has been presented here.  相似文献   

17.
Plasma waves at the dayside magnetopause   总被引:1,自引:0,他引:1  
Experimental investigations of plasma waves at the magnetopause, including recent results from the AMPTE/IRM satellite, show that both E and B fluctuations typically have a featureless spectrum which monotonically decreases with frequency; integrated rms amplitudes are typically a few mV m-1 for E and 10 nT for B, though in particular E can be as much as an order of magnitude larger in exceptional cases. Surveys show a lack of correlation between wave parameters and the magnetopause parameters. Under the assumption that crossing the diffusion region would give a pronounced signature in the waves, the survey data allow an upper limit to be placed on the latitudinal extent of the diffusion region, which is about 1000 km — implying that it is not surprising that the wave data surveys have so far failed to detect it. The observed wave turbulence levels have been used to estimate diffusion coefficients under different assumptions for the wave mode, but the resulting diffusion coefficient is always too small to explain either reconnection or boundary layer formation. Recent work of Galeev et al. (1986) indicates that the dominant diffusion process may be magnetic field migration, which is a macroscopic process involving the interaction of tearing mode islands. Assuming this mode to be present at the observed level of B, a particle diffusion coefficient of nearly 109 m2 s-1 is obtained. Another macroscopic diffusive process which could occur at the magnetopause is stochastic E × B scattering, which also implies a diffusion coefficient the order of 109 m2 s-1 if the observed E spectrum is assumed to be a turbulent cascade consisting of convective cells.  相似文献   

18.
Three-dimensional distributions for 24.0–44.5 keV protons (ions) are presented from the ISEE-1 medium energy particles instrument during a magnetopause traversal at 01:10 UT on 20 November 1977. Local time of the traversal was 1030. Ion fluxes were observed coming generally from the subsolar region, but over a wide range of latitudes. Enhanced fluxes were observed at the magnetopause crossing with strong components from the subsolar region and from the +Z SE direction. These observations are compared with the simultaneous electric field observations presented by Mozer et al. (1978). Ion streaming in a direction consistent with the Y-component of the drift velocity was observed whereas streaming along the X and Z-components is not seen. Based on energy arguments we conclude that in this case, 24 keV ions are not the major energy carrier of the locally measured · dissipation.  相似文献   

19.
Collective radiation processes operating in laboratory and space plasmas are reviewed with an emphasis towards astrophysical applications. Particular stress is placed on the physics involved in the various processes rather than in the detailed derivation of the formulas. Radiation processes from stable non-thermal, weakly turbulent and strongly turbulent magnetized and unmagnetized plasmas are discussed. The general theoretical ideas involved in amplification processes such as stimulated scattering are presented along with their application to free electron and plasma lasers. Direct radio-emission of electromagnetic waves by linear instabilities driven by beams or velocity anisotropies are shown to be of relevance in space applications. Finally, as an example of the computational state of the art pertaining to plasma radiation, a study of the type III solar radio bursts is presented.

Frequently used Symbols

Latin Symbols teB 0 ambient magnetic field - B 1 perturbed magnetic field - c speed of light - E 1 perturbed electric field - H Heaviside function - I unit dyadic - k wavevector of radiation fields - K D inverse Debye length - m, M electron and ion mass - T e , T i electron and ion temperature - u relativistic velocity - V e , V i electron and ion thermal speeds - V P , V g wave phase and group velocities - W wave spectral energy density Greek Symbols relativistic factor - plasma dielectric tensor - L , T longitudinal and transverse components of in isotropic media (i.e., =kk L /k 2+(lkk/k 2) T ) - index of refraction - angle between k and B 0 - plasma dispersion tensor (i.e. =(c 2/ 2)(kkk 2 l)+) - determinant of - D Debye length - e electron cyclotron frequency - u upper hybrid frequency - wave frequency - e electron plasma frequency Proceedings of the NASA/JPL Workshop on the Physics of Planetary and Astrophysical Magnetospheres.National Research Council/Naval Research Laboratory Research Associate.  相似文献   

20.
The emission mechanisms for solar radio bursts   总被引:1,自引:0,他引:1  
Emission mechanisms for meter- solar radio bursts are reviewed with emphasis on fundamental plasma emission.The standard version of fundamental plasma emission is due to scattering of Langmuir waves into transverse waves by thermal ions. It may be treated semi-quantitatively by analogy with Thomson scattering provided induced scattering is unimportant. A physical interpretation of induced scattering is given and used to derive the transfer equation in a semi-quantitative way. Solutions of the transfer equation are presented and it is emphasized that standard fundamental emission with brightness temperatures 109 K can be explained only under seemingly exceptional circumstances.Two alternative fundamental emission mechanisms are discussed: coalescence of Langmuir waves with low-frequency waves and direct conversion due to a density inhomogeneity. It is pointed out for the first time that the coalescence process (actually a related decay process) can lead to amplified transverse waves. The coalescence process saturates when the effective temperature T t of the transverse waves reaches the effective temperature T l of the Langmuir waves. This saturation occurs provided the energy density in the low-frequency waves exceeds a specific value which is about 10-9 of the thermal energy density for emission from the corona at 100 MHz. It is suggested that direct emission has been dismissed as a possible alternative without adequate justification.Second harmonic plasma emission is discussed and compared with fundamental plasma emission. It also saturates at T t T l , and this saturation should occur in the corona roughly for T l 1015 K. If fundamental plasma emission is attributed to coalescence with low-frequency waves, then for T l 1015 K the brightness temperatures at the two harmonics should be equal and equal to T l . This offers a natural explanation for the approximate equality of the two brightness temperature often found in type II and type III bursts.Analytic treatments of gyro-synchrotron emission are reviewed. The application of the mechanism to moving type IV bursts is discussed in view of bursts with 1010 K at 43 MHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号