首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 116 毫秒
1.
旋转状态下涡轮叶片压力面气膜冷却特性   总被引:3,自引:0,他引:3  
通过1.5级涡轮叶片旋转气膜冷却实验,揭示了整级涡轮叶片在旋转状态下的气膜冷却规律.实验中,主流雷诺数为8×104,旋转数分别为2.092,2.324和2.448,吹风比从0.3到3.0变化,冷却工质分别采用空气和二氧化碳,对应射流主流密度比分别为1.03和1.57.叶片表面喷有宽幅液晶,通过高精度CCD相机得到表面温度场.结果表明:压力面上,气膜冷却效率随吹风比的增大而升高,随旋转数的增大而降低;气膜轨迹向高半径方向偏转,偏转程度随旋转数的增大而加剧;提高射流主流密度比,有利于提高冷却效率.  相似文献   

2.
曲率对旋转态气膜冷却效率影响的数值模拟   总被引:1,自引:0,他引:1  
通过对旋转状态下曲率叶片模型上气膜冷却现象的流动和换热进行数值模拟,得到了不同主流雷诺数、吹风比和旋转数情况下吸力面和压力面上的冷却效率分布.计算选用κ-ω和SST(Shear-Stress Transport)湍流模型,主流雷诺数Re=3 198.4~6 716.6,吹风比M=0.2~1.2,旋转数Rt=0~0.015 9.结果表明:旋转数的增大导致气膜孔下游中心区域的冷却效率下降,但使压力面整场的冷却效果略有提高;吹风比的增大使得吸力面和压力面上的冷却效率逐渐降低,主流雷诺数的变化对壁面整体冷却效果则影响不大.此外,相同工况下吸力面上的冷却效率要高于压力面上的对应值.  相似文献   

3.
采用数值模拟方法,对旋转状态下曲率表面的气膜冷却进行研究.通过不同的曲率半径和吹风比,得到了冷却效率的分布情况,从而获得吹风比和曲率两因素对气膜冷却效率的影响规律.研究结果表明:低吹风比下,冷却效率较好;高吹风比下,气膜容易脱离壁面;凸表面的冷却效率随着曲率半径的增加而逐渐减小;而凹表面的冷却效率随着曲率半径的增加而逐渐增大;凸表面上曲率的影响作用随着旋转数的增加而逐渐弱化;而凹表面上曲率的作用随着旋转数的增大而逐渐增强.  相似文献   

4.
高旋转数下光滑回转通道的换热特性   总被引:5,自引:0,他引:5  
通过提高回转通道内气体压力到500 kPa以上,显著扩展了实验参数范围.实验雷诺数Re和旋转数Ro范围分别为10 000~70 000和0~2.08,完全匹配了真实发动机的Re和Ro.在此基础上实验研究了高旋转数下方截面光滑U型通道的换热特性.结果表明,在高旋转数下,旋转效应对通道进口和转弯段局部换热的影响比进口效应和弯道效应显著;第1通道后缘面换热随旋转数的增大而增强,而中下游前缘面在超过临界旋转数后换热增强;高旋转数下第2通道下游后缘面的换热强于前缘面.   相似文献   

5.
旋转对气膜冷却覆盖区域的影响   总被引:2,自引:1,他引:1  
气膜冷却是应用于航空发动机上的冷却技术,旋转是影响气膜与主流掺混区域的重要因素.在旋转气膜外换热实验台上进行的平板气膜冷却实验对此问题进行了研究.与静止叶片相比,气膜出流在旋转叶片表面会发生展向偏离.在压力面,转速增加,气膜出流先向低旋转半径方向偏转,后向高旋转半径方向偏转;在吸力面,气膜出流向高旋转半径方向偏转.动量流量比固定,当密度比增加时,压力面气膜出流轨迹向低旋转半径方向偏转加剧;吸力面气膜出流轨迹向高旋转半径方向的偏转也增大.   相似文献   

6.
气膜冷却是应用于航空燃气轮机上的冷却技术,旋转及表面曲率是影响气膜与 主流掺混区域的重要因素,通过数值计算方法对旋转状态下曲率对气膜与主流掺混区域的影 响进行了研究,湍流模型选取了k-ω模型.增加旋转速度,会引起吸力面气膜的分离; 固定转速,降低表面曲率半径,压力面气膜发生分离,吸力面气膜冷却效果得到改善.当动 量流量比在小于1的范围内变化时,旋转只改变压力面气膜与主流掺混区域的分布,而对吸 力面没有影响.   相似文献   

7.
采用数值模拟方法对不同雷诺数下静止状态涡轮叶片前腔带气膜孔出流的冲击流动与换热特性进行了研究.分析了叶片前缘冲击流动产生的不同涡团对其内表面换热的作用机理.计算结果表明:相同雷诺数下,叶片前缘内表面气膜孔附近的换热强化比高于通道的平均值.随着雷诺数增加,换热强化比有所提高.冲击流动与通道流动耦合而形成的波浪形涡区,极大地扩展了冲击强化换热区域.气膜孔出流的抽吸作用对冲击流产生影响,进一步扩大了冷却空气在前缘内表面的覆盖范围.气膜腔叶根处纵向截面的涡团阻碍了冷气向叶根方向扩展,降低了冷却效率;而横向截面的涡团则促进冷气与壁面热气的掺混,提升了换热效果.   相似文献   

8.
为研究沉积物对涡轮叶片前缘气膜冷却的影响,实验采用石蜡沉积模拟真实沉积。通过改变主流的温度、气膜孔射流角度及气膜孔孔径,观察了沉积环境下气膜冷却效率及沉积率的变化规律。实验结果表明:颗粒物沉积在障碍物表面的形貌受到主流温度的影响较大,当主流温度接近颗粒物熔点时,沉积覆盖最明显。在相同实验条件下,随着射流角度增大,单个气膜孔覆盖区域减小,气膜冷却效率下降,沉积前后,射流角度25°和65°的气膜冷却效率最大相差2%和5.6%,沉积率随射流角度的增大而升高;随着孔径增大,气膜冷却效率先降低后升高,其中4.5 mm孔径无论是否沉积,气膜冷却效率均最高,比3 mm孔径的气膜冷却效率高3.6%和3.2%。沉积率在孔径3 mm时最低。   相似文献   

9.
  总被引:1,自引:0,他引:1  
为了抑制气膜冷却过程中耦合涡的产生,提出了一种切向出流台阶缝冷却结构,并对其在涡轮导叶吸力面、压力面上布置时的气动性能及冷却特性进行了数值研究。结果表明:在吸力面叶栅通道喉部附近布置时仅使总压损失增加约2%;在压力面布置则能使总压损失、能量损失在低吹风比工况各降低约2.5%,同时出口气流角的增加不到0.1%,而且损失系数和出口气流角对吹风比的变化也不敏感。吸力面、压力面缝后冷却效率均较高,在高吹风比工况平均都有约8%轴向弦长的叶片表面冷却效率接近1.0。  相似文献   

10.
用大涡模拟的方法考察了静止和旋转状态下有直径4mm,35°流向倾斜圆柱孔的平板上气膜冷却的流动和换热,将静止状态预测的速度型与实验数据进行对比验证了计算结果的合理性.在固定吹风比为0.5、冷气进口雷诺数为2 588的情况下,静止和旋转状态的涡量分布出现明显差异,且旋转状态射流与主流相互作用的剪切层沿展向偏离气膜孔的几何中心线,使得原有对转涡对不再关于孔中心线对称分布,漩涡识别技术也发现典型的涡结构受旋转影响发生形态和运动规律的改变,进而影响湍流结构对主流和冷气掺混的作用.  相似文献   

11.
冲击与气膜的组合形式对冷却效果的影响   总被引:3,自引:2,他引:1  
通过数值模拟,研究了涡轮叶片弦中区所采用的新型双层腔冷却结构的冷却特性,系统分析了冲击与气膜的组合冷却流动换热的机理,讨论了冲击孔与气膜孔的组合形式对组合冷却效果的影响.计算参数范围是:吹风比M=0.6~2.0,冷气进口雷诺数Re=2000~5000.计算结果表明:①气膜孔与冲击孔的位置及其排列方式对双层腔结构的冷却效果的影响是非常明显的,且存在一个最佳的组合冷却形式;②在狭小的封闭空间内,冲击靶面的努塞尔数分布呈明显的双峰结构,冲击滞止点处于两个峰值之间的峰谷.   相似文献   

12.
采用三元体系微观相场动力学模型,对较低铝浓度的Ni75Al4V21合金中γ′相和θ相沉淀早期进行计算研究,模拟了合金的原子图像演化过程,并计算了θ(Ni3V)相和γ′(Ni3Al)相的相内成分序参数分布和长程序参数分布.结果表明,θ相先析出,其沉淀机制为等成分有序化+失稳分解,等成分有序化产生非化学计量比的单相θ有序畴,并被相界分开,失稳分解为一特殊的分解类型,主要发生在相界处,形成化学计量比θ有序相;此失稳分解过程同时又是γ′相在θ相界处以非经典异相形核方式析出的过程,先形成非化学计量比γ′有序相,并逐渐长成为化学计量比γ′有序相,从而形成2种有序相共存的组织形态.  相似文献   

13.
30°预旋进气旋转盘流动与换热特性的实验   总被引:3,自引:0,他引:3  
用实验的方法对具有30°预旋进气的旋转盘附近冷气流动与换热特性进行了研究,得到了静 盘表面压力、转盘表面温度、局部努赛尔特数的分布及平均努赛尔特数的变化.结果显示静 止盘罩表面的压力随着半径的增加而增加,随转速的增加而增加.转盘表面的局部努赛尔特 数在r<0.7R的区域基本不变, r>0.7R的区域里, 局部努赛尔特数随r的增加而增大.该预旋 角情况下,进气雷诺数对盘面平均努赛尔特数的影响大于旋转雷诺数.  相似文献   

14.
针对旋转光滑矩形通道分别应用针对旋转状态修正的 k-ε、标准k-ω以及提出的针对旋转状态修正的k-ω湍流模型进行流动和换热的数值模拟,通过与实验结论的对比,讨论了采用不同湍流模型对计算结果的影响.计算工况为旋转数Ro=0.24,流体进口雷诺数Re=25000.计算结果表明:采用所提出的针对旋转状态修正的k-ω湍流模型的计算结果要比采用针对旋转状态修正的k-ε以及标准k-ω湍流模型的计算结果更接近实验结论.  相似文献   

15.
拉压不同模量有限元法的收敛性分析   总被引:2,自引:0,他引:2  
针对力学研究中的不同模量有限元法的收敛性问题,从理论上论述了不同模量问题的剪切弹性模量对数值计算收敛性的影响,提出了一种不仅同主应力符号而且同主应力大小有关的剪切弹性模量的确定方法.在此基础上提出了加速收敛因子η,运用η参与运算,使各种不同模量问题有限元计算的收敛速度加快.  相似文献   

16.
带肋变截面回转通道内流动与换热的数值模拟   总被引:2,自引:0,他引:2  
开发了三维流动换热的通用计算程序,数值研究了带肋变截面回转通道内流动与换热的特性.湍流模型采用低雷诺数k-ε模型.通道肋间距为25mm,肋高分别为1mm,1.5mm,2mm,冷气进口雷诺数Re分别为7500,12500,18500,25000.计算结果表明:①通道的平均努赛尔数均随进口雷诺数的增大而增大;②对于Re=7500和12500,肋高越高,换热越强;对于Re=18500和25000,肋高为1.5mm的通道换热最强;③局部雷诺数的不同和离心力的影响导致通道内各区域的局部换热随肋高的变化趋势并不一致;在进口段,肋高越高,换热越强;在出口段,当Re=7500和12500时,肋高越高,换热越强,而当Re=18500和25000时,存在最佳肋高1.5mm.  相似文献   

17.
采用圆弧模型,测量了旋转状态下凸表面气膜冷却效率 η ad和换热系数 h f的分布规律,重点研究旋转数 Rt=ωD/u 对气膜冷却的影响.叶片表面温度采用先进的液晶测温技术进行测量.结果表明:①在旋转离心力和哥氏力的共同作用下,气膜轨迹向高半径方向发生了明显的偏移,并且转速越高偏移角度越大;②旋转使得气膜冷却效率降低,换热系数上升;③在旋转状态下,气膜发生了分离再附壁的现象.  相似文献   

18.
层板内冷通道辐射换热影响   总被引:1,自引:0,他引:1  
分析了层板换热过程,使用了"去除复杂表面"和"无限大平板" 等假设,给出了该假设下层板内腔辐射换热计算公式.又以一特定几何结构的层板模型为例,使用了3维流体力学计算程序求解了流-固耦合情况下的层板内部换热过程,研究了其在4种航空发动机典型工作状态下,内冷通道中的对流和辐射换热情况,得到了辐射与对流换热强度之比θ随冷气入口Re数和燃气加热功率的变化曲线,并对该曲线进行了指数拟合.建立了一套快速简捷计算层板内腔辐射状况的方法,为层板内腔换热研究是否应该忽略辐射,以及对层板冷却效果的修正,提供了一定的判断和计算依据.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号