首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 577 毫秒
1.
载人火星探测的行星保护   总被引:1,自引:0,他引:1       下载免费PDF全文
行星保护是影响载人火星探索任务的重要问题之一。载人探测的行星保护包括3个方面,即防止来源于地球的微生物污染目标星球的正向污染防护、防止外来生物对地球的潜在危害的逆向污染防护,以及确保航天员的健康和安全。国际宇航界已经开始针对载人火星探测的行星保护制定政策法规和开展技术研讨。本文介绍了行星保护的定义和法理依据,简要回顾了美国国家航空航天局在“阿波罗登月”中的行星保护措施,并对未来载人火星探测中的主要污染物、污染途径以及污染防护策略进行了初步探讨。  相似文献   

2.
<正>人类的深空探测事业,是一条漫漫长途。在可预见的未来,人类深空探测的重点依然是行星,小行星、彗星等太阳系小天体。火星探测是重中之重在深空探测领域已经取得辉煌成就的情况下,展望未来,火星仍然是人类深空探索的重中之重。由于每隔26个月才会有一次从地球到火星的理想轨道转移窗口,因此,2018年和2020年将迎来人类探索火星的又一个高峰。美国在火星探测活动中一直处于引领地位,但迄今为止人类送达  相似文献   

3.
随着人类空间探测范围的不断拓展,行星保护成为人类后续深空探测必须要面临的一个重要问题。从行星保护的概念入手,对其研究背景以及美国、欧洲、俄罗斯等国目前相关的研究进展做了简要介绍,涉及了政策制定、标准规范、污染防控、技术体系等各个方面。载人深空探测过程中各个环节都可能存在污染源,必须针对性地开展保护和防护技术研究;深入研究国际行星保护政策、法规和技术体系,对于我国后续开展相关研究具有很好的参考和借鉴意义。  相似文献   

4.
随着深空探测的距离越来越远,测控资源及能源的约束使得目前的行星表面漫游车采用遥操作加部分自主移动的在轨任务操作方式,越来越不适应未来科学探测的需求,而未来的深空探测任务对漫游车控制系统提出了更快、更轻、更智能的要求.对目前月球与火星表面漫游车自主导航控制系统的结构、能力进行了对比分析,给出了目前控制系统自主能力的约束条件,提出了未来行星表面漫游车的自主导航控制系统的体系结构及设计期望,并对未来行星表面漫游车自主等级进行了初步划分,为我国未来行星表面漫游车自主导航控制系统的研究提供技术支撑与发展规划指导.  相似文献   

5.
火星探测发展历程与未来展望   总被引:11,自引:6,他引:5       下载免费PDF全文
火星作为距地球最近的类地行星之一,火星探测是继月球探测之后深空探测的最大热点。在简要总结人类火星探测历程与未来发展趋势的基础上,对未来的火星探测规划任务及其面临的主要关键技术进行了重点论述,并给出了相应启示和发展展望;结合我国深空探测能力,并对中国后续开展火星探测活动提出了相关的建议。  相似文献   

6.
我国首次火星探测任务   总被引:6,自引:1,他引:5       下载免费PDF全文
我国首次火星探测任务于2016年立项实施。综合介绍了国际火星探测的历史和现状,我国首次火星探测任务的工程目标和科学目标、总体技术方案、关键技术难点、预期创新成果。我国首次火星探测任务将通过一次发射,实现火星环绕和着陆巡视,对火星开展全球性普查和局部的精细探测,推进火星地形地貌与地质构造、土壤特征与水冰分布、表明物质组成、大气电离层和气候环境、物理场与内部构造等方面的研究。实现火星探测任务目标,针对火星探测面临的各种特殊环境,需突破长期自主管理与控制等8类关键技术,取得的一系列创新成果,将为我国建立独立自主的深空探测基础工程体系,掌握深空探测基础共性技术,形成开展深空探测的基础工程能力。  相似文献   

7.
中国深空测控系统建设与技术发展   总被引:2,自引:1,他引:1       下载免费PDF全文
我国深空测控系统是伴随着探月工程“绕”“落”“回”三步走战略的实施,从突破关键技术、初步建成系统到系统完善,逐步建立起来的,火星探测工程的实施将进一步带动深空测控系统能力的建设。站在历史的视角,从顶层设计、关键技术攻关和系统建设等方面,回顾了我国深空测控系统从无到有的发展历程,并结合未来深空测控技术的发展,对我国深空测控系统的发展前景进行了展望。  相似文献   

8.
面对深空探测远距离、极端环境等带来的一系列挑战,人工智能技术将成为以月球/行星驻留科学探测与资源开发利用为主体的未来深空探测任务的研究重点。在总结分析深空探测人工智能技术发展历程与态势的基础上,分析了深空探测人工智能技术的主要特点,并提出了需重点发展的关键技术。  相似文献   

9.
中国月球及深空空间环境探测   总被引:1,自引:0,他引:1       下载免费PDF全文
深空探测承载着人类航天技术发展、探索宇宙奥秘和寻找地外生命及人类宜居地的重任,成为各航天大国关注的热点。我国月球与深空探测虽然起步晚,但起点高,正在追赶并将实现领先。简要回顾了我国月球及深空空间环境探测的载荷情况、数据结果、理论和应用研究成果,简述了当前在研的自主火星空间环境探测目标以及规划中的未来深空探测任务,并根据当前国际发展态势,及我国在研、规划中的月球及深空探测任务情况,分析了我国月球及深空空间环境探测的关键科学问题、载荷技术发展趋势、理论与模拟的研究需求,最后对深空环境探测进行了展望。  相似文献   

10.
中国未来将实施四次重大深空探测任务   总被引:1,自引:0,他引:1  
<正>中国的深空探测正由月球挺进更深远的宇宙。新华社记者从国家航天局获悉,我国未来深空探测工程将实施四次重大任务。这四次任务分别是:2020年发射首个火星探测器,一次实现火星环绕和着陆巡视探测;实施第二次火星探测任务,进行火星表面采样返回,开展火星构造、物质成分、火星环境等科学分析  相似文献   

11.
The implementation of planetary protection in the United States space program has reflected the trend in policy from an absolute to a probabilistic prohibition of the contamination of the celestial bodies of the solar system. The early emphasis on spacecraft sterilization (e.g. Ranger) was replaced by the imposition of contamination control procedures on later missions such as Pioneer, Viking, and Voyager. Similarly, analytical and laboratory techniques were developed to demonstrate compliance with probabilistic requirements. Microbial burden reduction methods that are not hazardous for spacecraft reliability supplanted the abstract concept of sterilization. The United States implementation of planetary protection has been completely successful. In an exploration program that has included Mercury, Venus, Mars, the Jovian system, and the Saturnian system, there have been no accidental impacts or detection of false positives (terrestrial microbes). Further, the contamination control and microbial burden procedures have proved beneficial to spacecraft systems and on-board science instruments. We review in this paper the implementation of planetary protection procedures by the Pioneer (10 and 11), Viking and Voyager projects.  相似文献   

12.
Mars surface in-situ exploration started in 1975 with the American VIKING mission. Two probes landed on the northern hemisphere and provided, for the first time, detailed information on the martian terrain, atmosphere and meteorology. The current goal is to undertake larger surface investigations and many projects are being planned by the major Space Agencies with this objective. Among these projects, the Mars 94/96 mission will make a major contributor toward generating significant information about the martian surface on a large scale. Since the beginning of the Solar System exploration, planets where life could exist have been subject to planetary protection requirements. Those requirements accord with the COSPAR Policy and have two main goals: the protection of the planetary environment from influence or contamination by terrestrial microorganisms, the protection of life science, and particularly of life detection experiments searching extra-terrestrial life, and not life carried by probes and spacecrafts. As the conditions for life and survival for terrestrial microorganisms in the Mars environment became known, COSPAR recommendations were updated. This paper will describe the decontamination requirements which will be applied for the MARS 94/96 mission, the techniques and the procedures which are and will be used to realize and control the decontamination of probes and spacecrafts.  相似文献   

13.
The ESA MarsNet mission proposal consists most probably of a trio of Mars landers. These landers each contain a variety of scientific equipment. The network of stations demands for a definition of its planetary protection requirements. With respect to the MarsNet mission only forward contamination problems will be considered. Future involvement of European efforts in planetary exploration including sample returns will also raise the problem of back contamination. A tradeoff study for the overall scientific benefit with respect to the approximative cost is necessary. Planetary protection guide-lines will be proposed by an interdisciplinary and international board of experts working in the fields of both biology and planetary science. These guide-lines will have to be flexible in order to be modified with respect to new research results, e.g. on adaptation of microorganisms to extreme (space) conditions. Experiments on the survival of microorganisms at conditions of simulated Mars surface and subsurface will have to be conducted in order to obtain a baseline data collection as a reference standard for future guide-lines.  相似文献   

14.
Societal and non-scientific factors represent potentially significant impediments for future Mars missions, especially in areas involving planetary protection. This paper analyzes public concerns about forward contamination to Mars and back contamination to Earth, evaluates major areas where lack of information may lead to uncontrollable impacts on future missions, and concludes that NASA should adopt a strategy that actively plans both the generation and subsequent management of planetary protection information to ensure that key audiences obtain needed information in a timely manner. Delay or avoidance in dealing with societal issues early in mission planning will increase the likelihood of public opposition, cost increases and missed launch windows. While this analysis of social and non-scientific considerations focuses on future Mars missions, the findings are also relevant for RTG launches, nuclear propulsion and other NASA activities perceived to have health, safety or environmental implications.  相似文献   

15.
The pace of scientific exploration of our solar system provides ever-increasing insights into potentially habitable environments, and associated concerns for their contamination by Earth organisms. Biological and organic-chemical contamination has been extensively considered by the COSPAR Panel on Planetary Protection (PPP) and has resulted in the internationally recognized regulations to which spacefaring nations adhere, and which have been in place for 40 years. The only successful Mars lander missions with system-level “sterilization” were the Viking landers in the 1970s. Since then different cleanliness requirements have been applied to spacecraft based on their destination, mission type, and scientific objectives. The Planetary Protection Subcommittee of the NASA Advisory Council has noted that a strategic Research & Technology Development (R&TD) roadmap would be very beneficial to encourage the timely availability of effective tools and methodologies to implement planetary protection requirements. New research avenues in planetary protection for ambitious future exploration missions can best be served by developing an over-arching program that integrates capability-driven developments with mission-driven implementation efforts. This paper analyzes the current status concerning microbial reduction and cleaning methods, recontamination control and bio-barriers, operational analysis methods, and addresses concepts for human exploration. Crosscutting research and support activities are discussed and a rationale for a Strategic Planetary Protection R&TD Roadmap is outlined. Such a roadmap for planetary protection provides a forum for strategic planning and will help to enable the next phases of solar system exploration.  相似文献   

16.
NASA is committed to exploring space while avoiding the biological contamination of other solar system bodies and protecting the Earth against potential harm from materials returned from space. NASA's planetary protection program evaluates missions (with external advice from the US National Research Council and others) and imposes particular constraints on individual missions to achieve these objectives. In 1997 the National Research Council's Space Studies Board published the report, Mars Sample Return: Issues and Recommendations, which reported advice to NASA on Mars sample return missions, complementing their 1992 report, The Biological Contamination of Mars Issues and Recommendations. Meanwhile, NASA has requested a new Space Studies Board study to address sample returns from bodies other than Mars. This study recognizes the variety of worlds that have been opened up to NASA and its partners by small, relatively inexpensive, missions of the Discovery class, as well as the reshaping of our ideas about life in the solar system that have been occasioned by the Galileo spacecraft's discovery that an ocean under the ice on Jupiter's moon Europa might, indeed, exist. This paper will report on NASA's planned implementation of planetary protection provisions based on these recent National Research Council recommendations, and will suggest measures for incorporation in the planetary protection policy of COSPAR.  相似文献   

17.
In accordance with the United Nations Outer Space Treaties [United Nations, Agreement Governing the Activities of States on the Moon and Other Celestial Bodies, UN doc A/RES/34/68, resolution 38/68 of December 1979], currently maintained and promulgated by the Committee on Space Research [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], missions exploring the Solar system must meet planetary protection requirements. Planetary protection aims to protect celestial bodies from terrestrial contamination and to protect the Earth environment from potential biological contamination carried by returned samples or space systems that have been in contact with an extraterrestrial environment. From an exobiology perspective, Mars is one of the major targets, and several missions are currently in operation, in transit, or scheduled for its exploration. Some of them include payloads dedicated to the detection of life or traces of life. The next step, over the coming years, will be to return samples from Mars to Earth, with a view to increasing our knowledge in preparation for the first manned mission that is likely to take place within the next few decades. Robotic missions to Mars shall meet planetary protection specifications, currently well documented, and planetary protection programs are implemented in a very reliable manner given that experience in the field spans some 40 years. With regards to sample return missions, a set of stringent requirements has been approved by COSPAR [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005, http://www.cosparhq.org/scistr/PPPolicy.htm], and technical challenges must now be overcome in order to preserve the Earth’s biosphere from any eventual contamination risk. In addition to the human dimension of the mission, sending astronauts to Mars will entail meeting all these constraints. Astronauts present huge sources of contamination for Mars and are also potential carriers of biohazardous material on their return to Earth. If they were to have the misfortune of being contaminated, they themselves would become a biohazard, and, as a consequence, in addition to the technical constraints, human and ethical considerations must also be taken into account.  相似文献   

18.
United Nations Space Treaties [10 and 11] require the preservation of planets and of Earth from contamination. All nations part to these Treaties shall take measures to prevent forward and backward contamination during missions exploring our solar system. As observer for the United Nations Committee on Peaceful Uses of Outer Space, the COSPAR (Committee of Space Research) defines and handles the applicable policy and proposes recommendations to Space Agencies [COSPAR Planetary Protection Panel, Planetary Protection Policy accepted by the COSPAR Council and Bureau, 20 October 2002, amended 24 March 2005. http://www.cosparhq.org/scistr/PPPolicy.htm.]. The goal is to protect celestial bodies from terrestrial biological contamination as well as to protect the Earth environment from an eventual biohazard which may be carried by extraterrestrial samples or by space systems returning to Earth. According to the applicable specifications, including in our case the French requirements [CNES, System Safety. Planetary Protection Requirements. Normative referential CNES RNC-CNES-R-14, CNES Toulouse, ed. 4, 04 October 2002.], the prevention of forward contamination is accomplished by reducing the bioburden on space hardware to acceptable, prescribed levels, including in some instances system sterilization, assembling and integrating the appropriate spacecraft systems in cleanrooms of appropriate biological cleanliness, avoiding or controlling any recontamination risk, and limiting the probability impact of space systems. In order to prepare for future exploration missions [Debus, A., Planetary protection: organization requirements and needs for future planetary exploration missions, ESA conference publication SP-543, pp 103–114, 2003.], and in particular for missions to Mars requiring to control the spacecraft bioburden, a test program has been developed to evaluate the biological contamination under the fairing of the Ariane 5 launcher.  相似文献   

19.
Current planetary quarantine considerations focus on robotic missions and attempt a policy of no biological contamination. The presence of humans on Mars, however, will inevitably result in biological contamination and physical alteration of the local environment. The focus of planetary quarantine must therefore shift toward defining and minimizing the inevitable contamination associated with humans. This will involve first determining those areas that will be affected by the presence of a human base, then verifying that these environments do not harbor indigenous life nor provide sites for Earth bacteria to grow. Precursor missions can provide salient information that can make more efficient the planning and design of human exploration missions. In particular, a robotic sample return mission can help to eliminate the concern about returning samples with humans or the return of humans themselves from a planetary quarantine perspective. Without a robotic return the cost of quarantine that would have to be added to a human mission may well exceed the cost of a robotic return mission. Even if the preponderance of scientific evidence argues against the presence of indigenous life, it must be considered as part of any serious planetary quarantine analysis for missions to Mars. If there is life on Mars, the question of human exploration assumes an ethical dimension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号