首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Benkhoff  J. 《Space Science Reviews》1999,90(1-2):141-148
Surface temperature and the available effective energy strongly influence the mass flux of H2O and minor volatiles from the nucleus. We perform computer simulations to model the gas flux from volatile, icy components in porous ice-dust surfaces, in order to better understand results from observations of comets. Our model assumes a porous body containing dust, one major ice component (H2O) and up to eight minor components of higher volatility (e.g. CO, CH4, CH3OH, HCN, C2H2, H2S), The body's porous structure is modeled as a bundle of tubes with a given tortuosity and an initially constant pore diameter. Heat is conducted by the matrix and carried by the vapors. The model includes radially inward and outward flowing vapor within the body, escape of outward flowing gas from the body, complete depletion of less volatile ices in outer layers, and recondensation of vapor in deeper, cooler layers. From the calculations we obtain temperature profiles and changes in relative chemical abundances, porosity and pore size distribution as a function of depth, and the gas flux into the interior and into the atmosphere for each of the volatiles at various positions of the body in its orbit. In this paper we relate the observed relative molecular abundances in the coma of Comet C/1995 O1 (Hale-Bopp) and of Comet 46P/Wirtanen to molecular fluxes at the surface calculated from our model. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Huebner  W.F.  Benkhoff  J. 《Space Science Reviews》1999,90(1-2):117-130
A major goal of comet research is to determine conditions in the outer solar nebula based on the chemical composition and structure of comet nuclei. The old view was to use coma abundances directly for the chemical composition of the nucleus. However, since the composition of the coma changes with heliocentric distance, r, the new view is that the nucleus composition msut be determined from analysis of coma mixing ratios as a function of r. Taking advantage of new observing technology and the early detection of the very active Comet Hale-Bopp (C/1995 O1) allows us to determine the coma mixing ratios over a large range of heliocentric distances. In our analysis we assume three sources for the coma gas: (1) the surface of the nucleus (releasing water vapor), (2) the interior of the porous nucleus (releasing many species more volatile than water), and (3) the distributed source (releasing gases from ices and hydrocarbon polycondensates trapped and contained in coma dust). Molecules diffusing inside the nucleus are sublimated by heat transported into the interior. The mixing ratios in the coma are modeled assuming various chemical compositions and structural parameters of the spinning nucleus as it moves in its orbit from large heliocentric distance through perihelion. We have combined several sets of observational data of Comet Hale-Bopp for H2O (from OH) and CO, covering the spectrum range from radio to UV. Many inconsistencies in the data were uncovered and reported to the observers for a reanalysis. Since post-perihelion data are still sparse, we have combined pre- and post-perihelion data. The resulting mixing ratio of CO relative to H2O as a function of r is presented with a preliminary analysis that still needs to be expanded further. Our fit to the data indicates that the total CO release rate (from the nucleus and distributed sources) relative to that of H2O is 30% near perihelion. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
4.
Kührt  E. 《Space Science Reviews》1999,90(1-2):75-82
Due to the outstanding brightness of Comet Hale-Bopp measurements of water production rates were possible over a wide range of heliocentric distances (up to 5 AU). A variety of observing techniques have been used, including radio observations, IR- and UV-measurements. The H2O-production of a comet is closely connected with the energy balance and the composition of its surface. By comparing measured and calculated rates it is possible to derive properties of the nucleus. The results of this study demonstrate the importance of seasonal effects and show that a low thermal conductivity enhances the water production rate. The observations can be matched with a relatively low, lunar-like thermal conductivity. A lower size limit for the nucleus of Hale-Bopp is derived. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Altwegg  K.  Balsiger  H.  Geiss  J. 《Space Science Reviews》1999,90(1-2):3-18
The investigation of the volatile material in the coma of comets is a key to understanding the origin of cometary material, the physical and chemical conditions in the early solar system, the process of comet formation, and the changes that comets have undergone during the last 4.6 billion years. So far, in situ investigations of the volatile constituents have been confined to a single comet, namely P/Halley in 1986. Although, the Giotto mission gave only a few hours of data from the coma, it has yielded a surprising amount of new data and has advanced cometary science by a large step. In the present article the most important results of the measurements of the volatile material of Halley's comet are summarized and an overview of the identified molecules is given. Furthermore, a list of identified radicals and unstable molecules is presented for the first time. At least one of the radicals, namely CH2, seems to be present as such in the cometary ice. As an outlook to the future we present a list of open questions concerning cometary volatiles and a short preview on the next generation of mass spectrometers that are being built for the International Rosetta Mission to explore the coma of Comet Wirtanen. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

6.
The structure and composition of comet nuclei are mainly altered during two short phases that are separated by a very long hibernation phase. Early evolution—during and immediately after formation—is the result of heating caused by radioactive decay, the most important source being 26Al. Several studies are reviewed, dealing with evolution throughout this phase, calculated by means of 1-D numerical codes that solve the heat and mass balance equations on a fixed spherically symmetric grid. It is shown that, depending on parameters, the interior may reach temperatures above the melting point of water. The models thus suggest that comets are likely to lose the ices of very volatile species during early evolution; ices of less volatile species are retained in the cold subsurface layer. As the initially amorphous ice is shown to crystallize in the interior, some objects may also lose part of the volatiles trapped in amorphous ice. Generally, the outer layers are far less affected than the inner part, resulting in a stratified composition and altered porosity distribution. The second phase of evolution occurs when comet nuclei are deflected into the inner solar system and is dominated by the effect of solar radiation. Now the outer layers are those mostly affected, undergoing crystallization, loss of volatiles, and significant structural changes. If any part of a comet nucleus should retain its pristine structure and composition, it would be well below the surface and also well above the core.  相似文献   

7.
As comet 9P/Tempel 1 approaches the Sun in 2004–2005, a temporary atmosphere, or “coma,” will form, composed of molecules and dust expelled from the nucleus as its component icy volatiles sublimate. Driven mainly by water ice sublimation at surface temperatures T > 200 K, this coma is a gravitationally unbound atmosphere in free adiabatic expansion. Near the nucleus (≤ 102 km), it is in collisional equilibrium, at larger distances (≥104 km) it is in free molecular flow. Ultimately the coma components are swept into the comet’s plasma and dust tails or simply dissipate into interplanetary space. Clues to the nature of the cometary nucleus are contained in the chemistry and physics of the coma, as well as with its variability with time, orbital position, and heliocentric distance. The DI instrument payload includes CCD cameras with broadband filters covering the optical spectrum, allowing for sensitive measurement of dust in the comet’s coma, and a number of narrowband filters for studying the spatial distribution of several gas species. DI also carries the first near-infrared spectrometer to a comet flyby since the VEGA mission to Halley in 1986. This spectrograph will allow detection of gas emission lines from the coma in unprecedented detail. Here we discuss the current state of understanding of the 9P/Tempel 1 coma, our expectations for the measurements DI will obtain, and the predicted hazards that the coma presents for the spacecraft. An erratum to this article is available at .  相似文献   

8.
Examination of the spatial distribution of CO intensity of Comet Halley indicates that a large fraction of CO originates from the refractory organic component in the coma, rather than directly from the volatiles in the nucleus. Based on the fluffy aggregate interstellar dust comet model, we have estimated the upper limits of the total amount of CO provided by coma dust. The implications from the comparison of the predicted results with the observed value have been discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
The distribution of some molecules and radicals (H2CO, CO, HNC, CN,?…) in the atmosphere of several comets cannot be explained only by a direct sublimation from the nucleus, or by gas phase processes in the coma. Such molecules are in part the result of a distributed source in the coma, which could be the photo and thermal degradation of dust. We present a review of the degradation processes and discuss possible interpretations of the observations in which the degradation of solid complex organic material in dust particles seems to play a major role. The knowledge of such gas production mechanisms provides important clues on the chemical nature of the refractory organic material contained in comet nuclei.  相似文献   

10.
Prialnik  D.  Podolak  M. 《Space Science Reviews》1999,90(1-2):169-178
The initial structure of a comet nucleus is most probably a homogeneous, porous, fine-grained mixture of dust and ices, predominantly water. The water ice is presumably amorphous and includes considerable fractions of occluded gases. This structure undergoes significant changes during the early evolution of the nucleus at large heliocentric distances, due to internal radiogenic heating. Structural changes occur mainly as a result of gas flow through the porous medium: the gas pressure that builds up in the interior is capable of breaking the fragile structure and altering the pore sizes and porosity. These effects are modeled and followed numerically, testing a large number of parameters. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
In this introductory presentation, material is categorized according to our state of knowledge: What do we know, what do we think we know but don’t know certainly, and what do we not know but often describe it as if it were a well-established fact about comets, their nuclei, their composition, and processes within comets and their nuclei. The material is presented not with the intend to criticize laboratory work simulating condition in comet nuclei, or observers analyzing their observations, nor modelers using data from both these sources to improve our understanding and make predictions. The intent is to provoke discussion and dialog between these groups to avoid overstating the results. What is a Comet? A comet is a diffuse appearing celestial phenomenon moving in an orbit about the Sun. The central body, the nucleus, is composed of ice and dust. It is the source of all cometary activity, including comae and tails. We distinguish between molecular (including atoms and ions) and dust comae. At heliocentric distances of about 1 AU and less, the hydrogen coma typically has dimensions larger than the Sun. The tails are composed of dust, neutral atoms and molecules, and plasma.  相似文献   

12.
MIRO: Microwave Instrument for Rosetta Orbiter   总被引:1,自引:0,他引:1  
The European Space Agency Rosetta Spacecraft, launched on March 2, 2004 toward Comet 67P/Churyumov-Gerasimenko, carries a relatively small and lightweight millimeter-submillimeter spectrometer instrument, the first of its kind launched into deep space. The instrument will be used to study the evolution of outgassing water and other molecules from the target comet as a function of heliocentric distance. During flybys of the asteroids (2867) Steins and (21) Lutetia in 2008 and 2010 respectively, the instrument will measure thermal emission and search for water vapor in the vicinity of these asteroids. The instrument, named MIRO (Microwave Instrument for the Rosetta Orbiter), consists of a 30-cm diameter, offset parabolic reflector telescope followed by two heterodyne receivers. Center-band operating frequencies of the receivers are near 190 GHz (1.6 mm) and 562 GHz (0.5 mm). Broadband continuum channels are implemented in both frequency bands for the measurement of near surface temperatures and temperature gradients in Comet 67P/Churyumov-Gerasimenko and the asteroids (2867) Steins and (21) Lutetia. A 4096 channel CTS (Chirp Transform Spectrometer) spectrometer having 180 MHz total bandwidth and 44 kHz resolution is, in addition to the continuum channel, connected to the submillimeter receiver. The submillimeter radiometer/spectrometer is fixed tuned to measure four volatile species – CO, CH3OH, NH3 and three, oxygen-related isotopologues of water, H2 16O, H2 17O and H2 18O. The basic quantities measured with the MIRO instrument are surface temperature, gas production rates and relative abundances, and velocity and excitation temperature of each species, along with their spatial and temporal variability. This paper provides a short discussion of the scientific objectives of the investigation, and a detailed discussion of the MIRO instrument system.  相似文献   

13.
The Deep Impact observations of low thermal inertia for comet 9P/Tempel 1 are of profound importance for the observations to be made by the Rosetta spacecraft at comet 67P/Churyumov-Gerasimenko. While sub-surface sublimation is necessary to explain the observations, the depth at which this occurs is no more than 2–3 cm and possibly less. The low thermal conductivity when combined with local surface roughness (also observed with Deep Impact) implies that local variations in outgassing rates can be substantial. These variations are likely to be on scales smaller than the resolution limits of all experiments on the Rosetta orbiter. The observed physico-chemical inhomogeneity further suggests that the Rosetta lander will only provide a local snapshot of conditions in the nucleus layer.  相似文献   

14.
Schwehm  G.  Schulz  R. 《Space Science Reviews》1999,90(1-2):313-319
The International Rosetta Mission, approved by the Science Programme Committee of the European Space Agency as the Planetary Cornerstone Mission in ESA's long-term programme Horizon 2000, will rendezvous in 2011 with Comet 46P/Wirtanen close to its aphelion and will study the nucleus and the evolution of the coma for almost two years until it reaches perihelion. In addition to the investigations performed by the scientific instruments on board the orbiter, a Surface Science Package (Rosetta Lander) will be deployed onto the surface of the nucleus early during the near-nucleus study phase. On its way to Comet 46P/Wirtanen, Rosetta will fly by and study the two asteroids 4979 Otawara and 140 Siwa. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The Deep Impact mission revealed many properties of comet Tempel 1, a typical comet from the Jupiter family in so far as any comet can be considered typical. In addition to the properties revealed by the impact itself, numerous properties were also discovered from observations prior to the impact just because they were the types of observations that had never been made before. The impact showed that the cometary nucleus was very weak at scales from the impactor diameter (~1 m) to the crater diameter (~100 m) and suggested that the strength was low at much smaller scales as well. The impact also showed that the cometary nucleus is extremely porous and that the ice was close to the surface but below a devolatilized layer with thickness of order the impactor diameter. The ambient observations showed a huge range of topography, implying ubiquitous layering on many spatial scales, frequent (more than once a week) natural outbursts, many of them correlated with rotational phase, a nuclear surface with many features that are best interpreted as impact craters, and clear chemical heterogeneity in the outgassing from the nucleus.  相似文献   

16.
We present a review of the main physical features of comet nuclei, their birthplaces and the dynamical processes that allow some of them to reach the Sun’s neighborhood and become potentially detectable. Comets are thought to be the most primitive bodies of the solar system although some processing—for instance, melting water ice in their interiors and collisional fragmentation and reaccumulation—could have occurred after formation to alter their primordial nature. Their estimated low densities (a few tenths g?cm?3) point to a very fluffy, porous structure, while their composition rich in water ice and other highly volatile ices point to a formation in the region of the Jovian planets, or the trans-neptunian region. The main reservoir of long-period comets is the Oort cloud, whose visible radius is ~3.3×104 AU. Yet, the existence of a dense inner core cannot be ruled out, a possibility that would have been greatly favored if the solar system formed in a dense galactic environment. The trans-neptunian object Sedna might be the first discovered member that belongs to such a core. The trans-neptunian population is the main source of Jupiter family comets, and may be responsible for a large renovation of the Oort cloud population.  相似文献   

17.
A major objective of the workshop was to learn about the chemical composition, physical structure, and thermodynamic conditions of the outer parts of the solar nebula where comets formed. Here we sum up what we have learned from years of research about the molecular constituents of comet comae primarily from in situ measurements of Comet 1P/Halley and remote sensing of Comets 1P/Halley, Hale-Bopp (C/1995 O1), and Hyakutake (C/1996 B2). These three bright comets are presumably captured Oort cloud comets. We summarize the analyses of these data to predict the composition of comet nuclei and project them further to the composition, structure, and thermodynamic conditions in the nebula. Near-future comet missions are directed toward less active short-period Jupiter-family comets. Thus, future analyses will afford a better understanding of the diversity of these two major groups of comets and their respective regions of origin in the solar or presolar nebula. We conclude with recommendations for determining critical data needed to aid in further analyses. Results of the workshop provide new guidelines and constraints for modeling the solar nebula. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
Since its discovery in 1867, periodic comet 9P/Tempel 1 has been observed at 10 returns to perihelion, including all its returns since 1967. The observations for the seven apparitions beginning in 1967 have been fit with an orbit that includes only radial and transverse nongravitational accelerations that model the rocket-like thrusting introduced by the outgassing of the cometary nucleus. The successful nongravitational acceleration model did not assume any change in the comet’s ability to outgas from one apparition to the next and the outgassing was assumed to reach a maximum at perihelion. The success of this model over the 1967–2003 interval suggests that the comet’s spin axis is currently stable. Rough calculations suggest that the collision of the impactor released by the Deep Impact spacecraft will not provide a noticeable perturbation on the comet’s orbit nor will any new vent that is opened as a result of the impact provide a noticeable change in the comet’s nongravitational acceleration history. The observing geometries prior to, and during, the impact will allow extensive Earth based observations to complement the in situ observations from the impactor and flyby spacecraft.  相似文献   

19.
The sodium emissions have been observed in several new and long-period comets, but only for comet Mrkos 1957d (Nguyen-Huu-Doan, 1960) was a sodium tail detected on a Schmidt plate obtained with a objective prism. Comet Hale-Bopp 1995 O1 offered the first great opportunity to get an image of a long sodium tail. It was more than 3 × 107 km long, defined as a third type of tail, as it was composed only of neutral atoms (Cremonese, 1997a). After the discovery of the sodium tail another team announced it had observed it (Wilson et al., 1998), but it was soon realized they had seen a different sodium tail. The image of Wilson et al. (1998) showed a very diffuse sodium tail superimposed on the dust tail, most likely due to the release of sodium atoms from dust particles. It was different from the narrow tail found in the image obtained by the European Hale-Bopp Team and its position angle was 15-20 degrees lower. Spectroscopic observations have been performed on the dust tail, at different beta values, and along the narrow sodium tail showing that the sodium emissions had very different line profiles. The analysis of these profiles will yield important insights into the sources in the inner coma and in the dust tail. This work will report on preliminary analysis of both sodium tails and emphasize the high-resolution spectroscopy performed on the dust tail. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
A fundamental goal of cometary studies is to determine the exact relationship between these bodies and the Solar System – the question(s) can be summarised as follows: did comets originate during the same events that spawned the Sun and planets, are they more primitive bodies that record a pre-solar history, or are they interstellar materials collected in relatively more recent times? Now, whatever the origin of comets, it is entirely possible that they could, in part, contain interstellar or pre-solar components – indeed, it seems rather likely in light of the fact that primitive meteorites contain such entities. These particular components are likely to be refractory (dust, macromolecular organic complexes, etc.). Of more relevance to the issues above are the volatile constituents, which make up the bulk of a comet's mass. Since these materials, by their very nature, volatilise during perihelion passage of a comet they can, in some instances, be detected and measured spectroscopically. Perhaps the most useful species for isotopic investigations are C2, HCN and CN. Unfortunately, spectroscopic measurements can only currently be made with accuracies of ±10 to ±20%. As such it is very often not practical to conclude anything further than the fact that isotopic measurements are compatible with ‘`solar’' values, which tends to imply an origin from the margins of the solar accretion disk. But there is another problem with the spectroscopic measurements – since these are made on gaseous species in the coma (and relatively minor species at that) it is impossible to be certain that these represent the true nuclear values. In other words, if the processes of sublimation, active jetting, and photochemistry in the coma impart isotopic fractionation, the spectroscopic measurements could give a false impression of the true isotope ratios. What is required is an experiment capable of measuring isotopic ratios at the very surface of a comet. Herein we describe the Ptolemy instrument, which is included on the Philae lander as part of the Rosetta mission to 67P/Churyumov-Gerasimenko. The major objective of Ptolemy is a detailed appraisal of the nature and isotopic compositions of all materials present at the surface of a comet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号