首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This collaborative study is based on the analysis and comparison of results of coordinated experimental investigations conducted in Bulgaria and Azerbaijan for revealing a possible influence of solar activity changes and related geomagnetic activity variations on the human cardio-vascular state. Arterial blood pressure and heart rate of 86 healthy volunteers were measured on working days during a period of comparatively high solar and geomagnetic activity (2799 measurements in autumn 2001 and spring 2002) in Sofia. Daily experimental investigations of parameters of cardio-vascular health state were performed in Azerbaijan with a permanent group of examined persons. Heart rate and electrocardiograms were digitally registered (in total 1532 records) for seven functionally healthy persons on working days and Saturdays, in the Laboratory of Heliobiology at the Medical Center INAM in Baku, from 15.07.2006 to 13.11.2007. Obtained digital recordings were subjected to medical, statistical and spectral analyses. Special attention was paid to effects of solar extreme events, particularly those of November 2001 and December 2006. The statistical method of the analysis of variance (ANOVA) and post hoc analysis were applied to check the significance of the influence of geomagnetic activity on the cardio-vascular parameters under consideration. Results revealed statistically significant increments for the mean systolic and diastolic blood pressure values of the group with geomagnetic activity increase. Arterial blood pressure values started increasing two days prior to geomagnetic storms and kept their high values up to two days after the storms. Heart rate reaction was ambiguous and not significant for healthy persons examined (for both groups) under conditions with geomagnetic activity changes. It is concluded that heart rate for healthy persons at middle latitudes can be considered as a more stable physiological parameter which is not so sensitive to environmental changes while the dynamics of arterial blood pressure reveals a compensatory reaction of the human organism for adaptation.  相似文献   

2.
Plasma and magnetic field parameter variations through fast forward interplanetary shocks were correlated with the peak geomagnetic activity index Dst in a period from 0 to 3 days after the shock, during solar maximum (2000) and solar minimum (1995–1996). Solar wind speed (V) and total magnetic field (Bt) were the parameters with higher correlations with peak Dst index. The correlation coefficients were higher during solar minimum (r2 = 56% for V and 39% for Bt) than during solar maximum (r2 = 15% for V and 12% for Bt). A statistical distribution of geomagnetic activity levels following interplanetary shocks was obtained. It was observed that during solar maximum, 36% and 28% of interplanetary shocks were followed by intense (Dst  −100 nT) and moderate (−50  Dst < −100 nT) geomagnetic activity, whereas during solar minimum 13% and 33% of the shocks were followed by intense and moderate geomagnetic activity. It can be concluded that the upstream/downstream variations of V and Bt through the shocks were the parameters better correlated with geomagnetic activity level, and during solar maximum a higher relative number of interplanetary shocks can be followed by intense geomagnetic activity than during solar minimum. One can extrapolate, for forecasting goals, that during a whole solar cycle a shock has a probability of around 50% to be followed by intense/moderate geomagnetic activity.  相似文献   

3.
We present a study of the temporal behavior of the systolic (SBP) and diastolic (DBP) blood pressure for a sample of 51 normotensive, healthy volunteers, 18 men and 33 women with an average age of 19 years old in Mexico City, Mexico, during April and May, 2008. We divided the data by sex along the circadian rhythm. Three geomagnetic storms occurred during the studied time-span. The strongest one, a moderate storm, is attributed to a coronal hole border that reached the Earth. The ANOVA test applied to the strongest storm showed that even though we are dealing with a moderate geomagnetic storm, there are statistically significant responses of the blood pressure. The superposed epoch analysis during a three-day window around the strongest storm shows that on average the largest changes occurred for the SBP. Moreover, the SBP largest increases occurred two days before and one day after this storm, and women are the most sensitive group as they present larger SBP and DBP average changes than men. Finally, given the small size of the sample, we cannot generalize our results.  相似文献   

4.
Studying the relationship of total electron content (TEC) to solar or geomagnetic activities at different solar activity stages can provide a reference for ionospheric modeling and prediction. On the basis of solar activity indices, geomagnetic activity parameters, and ionospheric TEC data at different solar activity stages, this study analyzes the overall variation relationships of solar and geomagnetic activities with ionospheric TEC, the characteristics of the quasi-27-day periodic oscillations of the three variables at different stages, and the delayed TEC response of solar activity by conducting correlation analysis, Butterworth band-pass filtering, Fourier transform, and time lag analysis. The following results are obtained. (1) TEC exhibits a significant linear relationship with solar activity at different solar activity stages. The correlation coefficients |R| are arranged as follows: |R|EUV > |R|F10.7 > |R|sunspot number. No significant linear relationship exists between TEC and geomagnetic activity parameters (|R| < 0.35). (2) TEC, solar activity indices, and geomagnetic activity parameters have a period of 10.5 years. The maximum amplitudes of the Fourier spectrum for TEC and solar activity indices are nearly 27 days and those of geomagnetic activity parameters are nearly 27 and 13.5 days. (3) The deviations of the quasi-27-day significant periodic oscillation of TEC and solar activity indices are consistent. (4) No evident relationship exists between the quasi-27-day periodic oscillation of TEC and geomagnetic activity parameters. (5) The delay time of TEC for the 10.7 cm solar radio flux and extreme ultraviolet is always consistent, whereas that for sunspot number varies at each stage.  相似文献   

5.
We investigate the geomagnetic field variations recorded by INTERMAGNET geomagnetic observatories, which are observed while the Moon’s umbra or penumbra passed over them during a solar eclipse event. Though it is generally considered that the geomagnetic field can be modulated during solar eclipses, the effect of the solar eclipse on the observed geomagnetic field has proved subtle to be detected. Instead of exploring the geomagnetic field as a case study, we analyze 207 geomagnetic manifestations acquired by 100 geomagnetic observatories during 39 solar eclipses occurring from 1991 to 2016. As a result of examining a pattern of the geomagnetic field variation on average, we confirm that the effect can be seen over an interval of 180?min centered at the time of maximum eclipse on a site of a geomagnetic observatory. That is, demonstrate an increase in the Y component of the geomagnetic field and decreases in the X component and the total strength of the geomagnetic field. We also find that the effect can be overwhelmed, depending more sensitively on the level of daily geomagnetic events than on the level of solar activity and/or the phase of solar cycle. We have demonstrated it by dividing the whole data set into subsets based on parameters of the geomagnetic field, solar activity, and solar eclipses. It is suggested, therefore, that an evidence of the solar eclipse effect can be revealed even at the solar maximum, as long as the day of the solar eclipse is magnetically quiet.  相似文献   

6.
地磁暴是空间天气预报的重要对象.在太阳活动周下降年和低年,冕洞发出的高速流经过三天左右行星际传输到达地球并引发的地磁暴占主导地位.目前地磁暴的预报通常依赖于1AU处卫星就位监测的太阳风参数,预报提前量只有1h左右.为了增加地磁暴预报提前量,需要从高速流和地磁暴的源头即太阳出发,建立冕洞特征参数与地磁暴的定量关系.分析了2010年5月到2016年12月的152个冕洞-地磁暴事件,利用SDO/AIA太阳极紫外图像提取了两类冕洞特征参数,分析了其与地磁暴期间ap,Dst和AE三种地磁指数的统计关系,给出冕洞特征参数与地磁暴强度以及发生时间的统计特征,为基于冕洞成像观测提前1~3天预报地磁暴提供了依据.   相似文献   

7.
There are collaborative and cross-disciplinary space weather studies in the Azerbaijan National Academy of Sciences conducted with purposes of revealing possible effects of solar, geomagnetic and cosmic ray variability on certain technological, biological and ecological systems. This paper describes some results of the experimental studies of influence of the periodical and aperiodical changes of geomagnetic activity upon human brain, human health and psycho-emotional state. It also covers the conclusions of studies on influence of violent solar events and severe geomagnetic storms of the solar cycle 23 on the mentioned systems in middle-latitude location. It is experimentally established that weak and moderate geomagnetic storms do not cause significant changes in the brain’s bioelectrical activity and exert only stimulating influence while severe disturbances of geomagnetic conditions cause negative influence, seriously disintegrate brain’s functionality, activate braking processes and amplify the negative emotional background of an individual. It is concluded that geomagnetic disturbances affect mainly emotional and vegetative spheres of human beings while characteristics reflecting personality properties do not undergo significant changes.  相似文献   

8.
Responses of low-latitude ionospheric critical frequency of F2 layer to geomagnetic activities in different seasons and under different levels of solar activity are investigated by analyzing the ionospheric foF2 data from DPS-4 Digisonde in Hainan Observatory during 2002–2005. The results are as follows: (1) the response of foF2 to geomagnetic activity in Hainan shows obvious diurnal variation except for the summer in low solar activity period. Generally, geomagnetic activity will cause foF2 to increase at daytime and decrease at nighttime. The intensity of response of foF2 is stronger at nighttime than that at daytime; (2) seasonal dependence of the response of foF2 to geomagnetic activity is very obvious. The negative ionospheric storm effect is the strongest in summer and the positive ionospheric storm effect is the strongest in winter; (3) the solar cycle has important effect on the response of foF2 to geomagnetic activity in Hainan. In high solar activity period, the diurnal variation of the response of foF2 is very pronounced in each season, and the strong ionospheric response can last several days. In low solar activity period, ionospheric response has very pronounced diurnal variation in winter only; (4) the local time of geomagnetic activities occurring also has important effect on the responses of foF2 in Hainan. Generally, geomagnetic activities occurred at nighttime can cause stronger and longer responses of foF2 in Hainan.  相似文献   

9.
Using the Dst and AE geomagnetic index values and parameters of interplanetary magnetic field and solar wind we have examined the geoeffectiveness of transient ejections in the solar wind, namely, magnetic clouds and high-speed streams. It is found that for magnetic clouds the dependences of indices on the solar wind electric field are nonlinear of different kind. In contrast to magnetic clouds, the dependence of Dst and AE geomagnetic index values on the solar wind electric field agrees closely with the linear one for high-speed streams. We suggest approximating formulas to describe dependences obtained taking into account the relation of the electric field transpolar potential to the electric field and dynamic pressure of the solar wind. We suppose that the interplanetary magnetic field fluctuations also contribute to these dependences.  相似文献   

10.
Based on the measurements made by Atmospheric Density Detectors (ADDs) onboard Chinese spacecraft Shenzhou 2-4, the variations of thermosphere density are revealed. During the quiet period, the density at spacecraft altitude of 330~410km exhibited a dominant diurnal variation, with high value on dayside and low value on nightside. The ratio of the diurnal maximum density to the minimum ranged from 1.7 to 2.0. The ratio shows a positive correlation with the level of solar activity and a negative correlation with the level of geomagnetic activity. When a geomagnetic disturbance comes, the atmospheric density at the altitude of 330~410km displayed a global enhancement. For a strong geomagnetic disturbance, the atmospheric density increased by about 56%, and reached its maximum about 6~7 hours after the geomagnetic disturbance peak. The density asymmetry was also observed both in the southern and northern hemisphere during the geomagnetic disturbance peak.   相似文献   

11.
The paper presents results of our study of dependence of geomagnetic activity from geoeffective parameters taking into account mutual orientation of the interplanetary magnetic field, electric field of the solar wind and geomagnetic moment. We attract a reconnection model elaborated by us made allowance for changes of geometry of the solar wind–magnetosphere interaction during annual and diurnal motions of the Earth. We take as our data base the interplanetary magnetic field and solar wind velocity measured at 1 a.u. at ecliptic plane for the period of 1963–2005 and Kp, Dst, am indices. Taken as a whole a geoeffective parameter suggested by us explains 95% of observed variations of the indices. Changes of the geometric factor determined by mutual orientation of the solar wind electric field and geomagnetic moment explain larger than 75% of observed statistical variations of Dst and am indices. Based on our results we suggest a new explanation of semi-annual and UT variation of geomagnetic activity.  相似文献   

12.
The Earth’s magnetosphere response to interplanetary medium conditions on January 21–22, 2005 and on December 14–15, 2006 has been studied. The analysis of solar wind parameters measured by ACE spacecraft, of geomagnetic indices variations, of geomagnetic field measured by GOES 11, 12 satellites, and of energetic particle fluxes measured by POES 15, 16, 17 satellites was performed together with magnetospheric modeling based in terms of A2000 paraboloid model. We found the similar dynamics of three particle populations (trapped, quasi-trapped, and precipitating) during storms of different intensities developed under different external conditions: the maximal values of particle fluxes and the latitudinal positions of the isotropic boundaries were approximately the same. The main sources caused RC build-up have been determined for both magnetic storms. Global magnetospheric convection controlled by IMF and substorm activity driven magnetic storm on December 14–15, 2006. Extreme solar wind pressure pulse was mainly responsible for RC particle injection and unusual January 21, 2005 magnetic storm development under northward IMF during the main phase.  相似文献   

13.
14.
There is an increasing amount of evidence linking biological effects to solar and geomagnetic disturbances. A series of studies is published referring to the changes in human physiological responses at different levels of geomagnetic activity. In this study, the possible relation between the daily variations of cosmic ray intensity, measured by the Neutron Monitor at the Cosmic Ray Station of the University of Athens (http://cosray.phys.uoa.gr) and the average daily and hourly heart rate variations of persons, with no symptoms or hospital admission, monitored by Holter electrocardiogram, is considered. This work refers to a group of persons admitted to the cardiological clinic of the KAT Hospital in Athens during the time period from 4th to 24th December 2006 that is characterized by extreme solar and geomagnetic activity. A series of Forbush decreases started on 6th December and lasted until the end of the month and a great solar proton event causing a Ground Level Enhancement (GLE) of the cosmic ray intensity on 13th December occurred. A sudden decrease of the cosmic ray intensity on 15th December, when a geomagnetic storm was registered, was also recorded in Athens Neutron Monitor station (cut-off rigidity 8.53 GV) with amplitude of 4%. It is noticed that during geomagnetically quiet days the heart rate and the cosmic ray intensity variations are positively correlated. When intense cosmic ray variations, like Forbush decreases and relativistic proton events produced by strong solar phenomena occur, cosmic ray intensity and heart rate get minimum values and their variations, also, coincide. During these events the correlation coefficient of these two parameters changes and follows the behavior of the cosmic ray intensity variations. This is only a small part of an extended investigation, which has begun using data from the year 2002 and is still in progress.  相似文献   

15.
Upper atmosphere composition data were obtained for the last half year with a quadruple mass spectrometer on board spacecraft "SZ-2" launched on 10 Jan uary 2001. Based on the analysis of these data, the variations of atmospheric compositions in solar and geomagnetic quiet conditions are reported first, then a detailed discussion on the atmospheric composition variations under the so lar and geomagnetic disturbed conditions is given. The results show that near the altitude of 400 km the variations of main atmospheric compositions corre sponding to solar disturbances are more remarkable in the sunlit area than in the shade area. On the contrary, in geomagnetic disturbance events the corre sponding variations are more obvious in the shade area, an evident increase of N2 density at relatively higher latitudes was observed.  相似文献   

16.
冕洞特征参数与重现型地磁暴关系的统计研究   总被引:1,自引:1,他引:0  
在提取冕洞特征参数的基础上,利用1996年到2005年8月近十年来对地磁扰动有影响的356个冕洞事例,定量分析了冕洞特征参数(包括冕洞的面积比、经纬度跨度等)与冕洞高速流特征、重现型地磁扰动特征(包括扰动大小和持续时间等)之间的相关性,研究发现,从引起地磁扰动的冕洞在整个太阳活动周的分布来看,在地磁扰动峰年中冕洞影响同样具有重要的贡献;冕洞高速流太阳风速度与地磁扰动强度之间存在较强的相关性,而高速流中太阳风速度与冕洞面积比关系不大,与冕洞亮度存在一定相关性;冕洞的经度跨度与地磁扰动持续时间存在很强的正相关性.   相似文献   

17.
Long-term variations of the surface pressure in the North Atlantic for the period 1874–1995 (Mean Sea Level Pressure archive, Climatic Research Unit, UK) were compared with indices of solar and geomagnetic activity and the galactic cosmic ray (GCR) variations characterized by the concentration of the cosmogenic isotope 10Be. A periodicity of ∼80 yrs close to the Gleissberg cycle in the intensity of the 11-yr solar cycles was found in the pressure variations at middle latitudes (45–65°N) in the cold half of the year, which is the period of intensive cyclogenesis. It was shown that a long-term increase of pressure in this region coincided with a secular rise of solar/geomagnetic activity which was accompanied by a decrease in GCR intensity. Long-term decreases of pressure were observed during the periods of low (or decreasing) intensities of sunspot cycles. Similar features were also found in the spectral characteristics of geomagnetic activity indices, GCR intensity and pressure at middle latitudes on the quasi-decadal time scale. Effects of solar activity/GCR variations on the surface pressure seem to be more pronounced in the North Atlantic zone of intensive cyclogenesis (near the eastern coasts of North America). The results obtained suggest possible links between long-term variations in cyclonic activity at extratropical latitudes of the North Atlantic and solar activity/GCR variations on the time scales from ∼10 to ∼100 yrs.  相似文献   

18.
The occurrence rate of SAR arcs during 1997–2007 has been analyzed based on the photometric observations at the Yakutsk meridian (Maimaga station, corrected geomagnetic coordinates: 57°N, 200°E). SAR arcs appeared in 114 cases (∼500 h) during ∼370 nights of observations (∼3170 h). The occurrence frequency of SAR arcs increases to 27% during the growth phase of solar activity and has a clearly defined maximum at a decline of cycle 23. The SAR arc registration probability corresponds to the variations in geomagnetic activity in this solar cycle. The dates, intervals of UT, and geomagnetic latitudes of SAR arc observations at the Yakutsk meridian are presented.  相似文献   

19.
广州地磁Z分量日变幅的谱特征   总被引:1,自引:0,他引:1  
利用1972—1993年广州地磁资料,分析了Z分量日变幅的年平均、年变化和半年变化等低频成分的逐年变化,以及小于60天的短周期变化特征.同时对1972—1993年的F10.7日均值进行了谱分析.结果指出,广州地磁Z分量日变幅的年平均与太阳活动指数F10.7的年平均存在良好的线性相关;具有幅度大约5nT夏季极大的年变化,与太阳活动没有明显相关,是一种季节效应;存在春秋分极大的半年变化,幅度与太阳活动有关,高年的幅度明显大于低年;具有明显的与太阳自转相关的27天左右的变化和明显的与行星波有关的接近16日、10日、5日、2日等短周期变化.广州地磁Z分量日变幅的这些谱特征,有助于更深入地了解中低层大气对电离层影响的物理机制.  相似文献   

20.
A drag coefficient (CD) inversion method is introduced to study the variations of the drag coefficient for orbital satellites with spherical geometry. Drag coefficients of the four micro satellites in the Atmospheric Neutral Density Experiment (ANDE) are compiled out with this new method. The Lomb-Scargle Periodgram (LSP) analysis of the four ANDE satellites' CD series has shown that there are obvious 5, 7, 9, and 27 days' period in those data. Interesting results are found through comparing the LSP analysis with series of the daily solar radio flux at 10.7 cm (F10.7 index), the Ap index, and the daily averaged solar wind speed at 1AU. All series in the same time interval have an obvious period of about 27 days, which has already been explained as the association with the 27 days' solar rotation. The oscillating periods less than 27 days are found in series of CD, Ap and solar wind speed at 1AU, e.g., the 5, 7, 9 days period. However, these short periods disappeared in the time series of F10.7 index. The same periodicities of 5, 7, 9 days in Ap and solar wind are presented at the same time interval during the declining phase of solar cycle 23. While in the ascending phase of solar cycle 24, these short oscillations are not so obvious as that in the declining phase of solar cycle 23. These results provide definite evidence that the CD variations with period of 5, 7 and 9 days are produced by a combination of space weather effects caused by the solar wind and geomagnetic activity.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号