首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The temporal and seasonal variations of Total Electron Content (TEC) are studied at Agra (Geographic Lat. 27.17°N, Long. 78.89°E, Dip: 41.4°), India, which is in the equatorial anomaly region, for a period of 12 months from 01 January to 31 December, 2007 using a Global Positioning System (GPS) receiver. The mean TEC values show a minimum at 0500 h LT (LT = UT + 5.5 h) and a peak value at about 1400 h LT. The lowest TEC values are observed in winter whereas largest values are observed in equinox and summer. Anomalous variations are found during the period of magnetic disturbances. These results are compared with the TEC derived from IRI-2007 using three different options of topside electron density, NeQuick, IRI01-corr, and IRI-2001. A good agreement is found between the TEC obtained at Agra and those derived from IRI models.  相似文献   

2.
Equatorial plasma bubbles (EPBs) are common features of the equatorial and low-latitude ionosphere and are known to cause radio wave scintillation which leads to the degradation of communication and navigation systems. Although these structures have been studied for decades, a full understanding of their evolution and dynamics remains important for space weather mitigation purposes. In this study, we present cases of EPBs occurrences around April and July 2012 geomagnetic storm periods over the African equatorial sector. The EPBs were observed from the Communications/Navigation Outage Forecasting System (C/NOFS) and generally correlated well to the ionospheric irregularities observed from the Global Positioning System total electron content (GPS-TEC) measurements (rate of TEC change, ROT). This study revealed that the evolution of the EPBs during moderate storms is controlled by the strength of the daytime equatorial electrojet (EEJ) currents regardless of the strength of the equatorial ionization anomaly (EIA), the latter is observed during the July storm case in particular. These effects were more evident during the main and part of the early recovery phases of the geomagnetic storm days considered. However, the evening hours TEC gradients between regions of the magnetic equator and ionization crests also played roles in the existence of ionospheric irregularities.  相似文献   

3.
The total electron content (TEC) in the equatorial and low-latitude ionosphere over Brazil was monitored in two dimensions by using 2011 data from the ground-based global navigation satellite system (GNSS) receiver network operated by the Brazilian Institute for Geography and Statistics. It was possible to monitor the spatial and temporal variations in TEC over Brazil continuously during both day and night with a temporal interval of 10 min and a spatial resolution of about 400 km. The daytime equatorial ionization anomaly (EIA) and post-sunset plasma enhancement (PS-EIA) were monitored over an area corresponding to a longitudinal extension of 4000 km in South America. Considerable day-to-day variation was observed in EIA and PS-EIA. A large latitudinal and longitudinal gradient of TEC indicated a significant ionospheric range error in application of the GNSS positioning system. Large-scale plasma bubbles after sunset were also mapped over a wide range. Depletions with longitudinally separated by more than 800 km were observed. They were extended by more than 2000 km along the magnetic field lines and drifted eastward. It is expected that 2-dimensional TEC mapping can serve as a useful tool for diagnosing ionospheric weather, such as temporal and spatial variation in the equatorial plasma trough and crest, and particularly for monitoring the dynamics of plasma bubbles.  相似文献   

4.
磁层-电离层电动耦合与中纬地磁指数的变化   总被引:1,自引:1,他引:0  
本文探讨磁层一电离层耦合过程内中纬地磁指数的变化特点,并与极光电集流和赤道电集流(指数)变化相比较。相关分析和时序叠加分析均表明,高、中、低纬地磁指数变化可归结为磁层一电离层电动耦合的统一物理图象。有R事件的磁暴主相初期和无R事件的磁扰期内,赤道电集流和中纬地磁指数的变化各不相同。这再次证明,耦合分析中将磁层源扰动的直接穿透作用与经电离层内动力过程的效应二者加以区分和综合研究是很重要的。   相似文献   

5.
本文探讨磁层一电离层耦合过程内中纬地磁指数的变化特点,并与极光电集流和赤道电集流(指数)变化相比较.相关分析和时序叠加分析均表明,高、中、低纬地磁指数变化可归结为磁层一电离层电动耦合的统一物理图象.有R事件的磁暴主相初期和无R事件的磁扰期内,赤道电集流和中纬地磁指数的变化各不相同.这再次证明,耦合分析中将磁层源扰动的直接穿透作用与经电离层内动力过程的效应二者加以区分和综合研究是很重要的.  相似文献   

6.
An annular solar eclipse occurred over the Indian subcontinent during the afternoon hours of January 15, 2010. This event was unique in the sense that solar activity was minimum and the eclipse period coincides with the peak ionization time at the Indian equatorial and low latitudes. The number of GPS receivers situated along the path of solar eclipse were used to investigate the response of total electron content (TEC) under the influence of this solar eclipse. These GPS receivers are part of the Indian Satellite Based Augmentation System (SBAS) named as ‘GAGAN’ (GPS Aided Geo Augmented Navigation) program. The eight GPS stations located over the wide range of longitudes allows us to differentiate between the various factors induced due to solar eclipse over the equatorial and low latitude ionosphere. The effect of the eclipse was detected in diurnal variations of TEC at all the stations along the eclipse path. The solar eclipse has altered the ionospheric behavior along its path by inducing atmospheric gravity waves, localized counter-electrojet and attenuation of solar radiation intensity. These three factors primarily control the production, loss and transport of plasma over the equatorial and low latitudes. The localized counter-electrojet had inhibited the equatorial ionization anomaly (EIA) in the longitude belt of 72°E–85°E. Thus, there was a negative deviation of the order of 20–40% at the equatorial anomaly stations lying in this ‘inhibited EIA region’. The negative deviation of only 10–20% is observed for the stations lying outside the ‘inhibited EIA region’. The pre-eclipse effect in the form of early morning enhancement of TEC associated with atmospheric gravity waves was also observed during this solar eclipse. More clear and distinctive spatial and temporal variations of TEC were detected along the individual satellite passes. It is also observed that TEC starts responding to the eclipse after 30 min from start of eclipse and the delay of the maximum TEC deviation from normal trend with respect to the maximum phase of the eclipse was close to one hour in the solar eclipse path.  相似文献   

7.
This paper presents the response of the ionosphere during the intense geomagnetic storms of October 12–20, 2016 and May 26–31, 2017 which occurred during the declining phase of the solar cycle 24. Total Electron Content (TEC) from GPS measured at Indore, Calcutta and Siliguri having geomagnetic dips varying from 32.23°N, 32°N and 39.49°N respectively and at the International GNSS Service (IGS) stations at Lucknow (beyond anomaly crest), Hyderabad (between geomagnetic equator and northern crest of EIA) and Bangalore (near magnetic equator) in the Indian longitude zone have been used for the storms. Prominent peaks in diurnal maximum in excess of 20–45 TECU over the quiet time values were observed during the October 2016 storm at Lucknow, Indore, Hyderabad, Bangalore and 10–20 TECU for the May 2017 storm at Siliguri, Indore, Calcutta and Hyderabad. The GUVI images onboard TIMED spacecraft that measures the thermospheric O/N2 ratio, showed high values (O/N2 ratio of about 0.7) on October 16 when positive storm effects were observed compared to the other days during the storm period. The observed features have been explained in terms of the O/N2 ratio increase in the equatorial thermosphere, CIR-induced High Speed Solar Wind (HSSW) event for the October 2016 storm. The TEC enhancement has also been explained in terms of the Auroral Electrojet (AE), neutral wind values obtained from the Horizontal Wind Model (HWM14) and equatorial electrojet strength from magnetometer data for both October 2016 and May 2017 storms. These results are one of the first to be reported from the Indian longitude sector on influence of CME- and CIR-driven geomagnetic storms on TEC during the declining phase of solar cycle 24.  相似文献   

8.
The diurnal variations in total electron content (TEC) in the equatorial ionisation anomaly (EIA) region are not always represented by two crests on both sides of the magnetic equator. Sometimes, only an obvious single crest is evident at equatorial and low latitudes. In this paper, we focus on analysis of the morphological features of the single crest phenomenon in TEC around 120°E longitude during geomagnetic quiet days (Kp < 4). The variations in TEC are also compared with morphological parameters (foF2 and hmF2) derived from the International Reference Ionosphere extended to Plasmasphere (IRI–Plas) model. Our results show that the single crest phenomenon occurs mainly on days with extremely low solar activity, while the corresponding F2 layer critical frequency showed obvious asymmetry, or even only a single peak.  相似文献   

9.
The ionospheric Total Electron Content (TECs), derived by dual frequency signals from the Global Positioning System (GPS) recorded near the Indian equatorial anomaly region, Bhopal (23.2°N, 77.4°E, Geomagnetic 14.2°N) were analyzed for the period of January, 2005 to February, 2008. The work deals with monthly, diurnal, solar and magnetic activity variations on night-time enhancement in TEC. From a total of 157 night-time enhancements, 75 occur during pre-midnight and 82 post-midnight hours. The occurrence of night-time enhancement in TEC is utmost during summer months, followed by equinox and winter months. The occurrence of night-time enhancement in TEC decreases with increase in solar and magnetic activities. We observed that peak size and half amplitude duration are positively correlated, while time of occurrence of night-time enhancement in TEC and time of peak enhancement are negatively correlated with solar activity. The peak size, half amplitude duration, time of peak enhancement and time of occurrence of night-time enhancement in TEC shows negative correlation with magnetic activity. The results have been compared with the earlier ones and discussed in terms of possible source mechanism responsible for the enhancement at anomaly crest region.  相似文献   

10.
The vertical ionospheric TEC values obtained from GAGAN grid based ionospheric delay correction values over the sea in the Indian equatorial region have been compared with the corresponding values derived from the International Reference Ionosphere model, IRI-2016. The objective of this work is to study the deviation of the vertical TEC derived from the IRI model from ground truths over the sea for different conditions. This will serve the basic intention of assessing the candidature of the IRI model as an alternative ionospheric correction model in navigation receivers in terms of accuracy. We have chosen different solar activity periods, seasons, geomagnetic conditions, locations etc. for our comparison and analysis. The TEC values by the IRI-2016 were compared with the actual measured values for the given conditions and errors were obtained. The measured vertical TEC values at the ionospheric grid points were derived from the GAGAN broadcast ionospheric delay data and used as reference. The IRI model with standard internal functions was used in estimating the TEC at the same ionospheric grid points. The errors in the model derived values are statistically analysed. Broadly, the results show that, for the Indian sector over the sea, the IRI model performs better on quiet days in off equatorial regions, particularly in the northern region. The overall performance degrades for other conditions with the model generally underestimating the true TEC values and most severely in the equatorial region. The performance is worst in this region for the disturbed days of the equinoctial period. The comparison study is also done with the TEC data measured directly by dual frequency GPS receivers. The results were found to be in general agreement with those obtained by comparing the model with GAGAN broadcast data as reference. This study will be useful in considering the IRI-2016 model for real time estimates of TEC as an alternative to the current parametric model in a satellite navigation receiver in absence of other options.  相似文献   

11.
The ionospheric total electron content (TEC), derived by analyzing dual frequency signals from the Global Positioning System (GPS) recorded near the Indian equatorial anomaly region, Varanasi (geomagnetic latitude 14°, 55′N, geomagnetic longitude 154°E) is studied. Specifically, we studied monthly, seasonal and annual variations as well as solar and geomagnetic effects on the equatorial ionospheric anomaly (EIA) during the solar minimum period from May 2007 to April 2008. It is found that the daily maximum TEC near equatorial anomaly crest yield their maximum values during the equinox months and their minimum values during the summer. Using monthly averaged peak magnitude of TEC, a clear semiannual variation is seen with two maxima occurring in both spring and autumn. Statistical studies indicate that the variation of EIA crest in TEC is poorly correlated with Dst-index (r = −0.03) but correlated well with Kp-index (r = 0.82). The EIA crest in TEC is found to be more developed around 12:30 LT.  相似文献   

12.
Occurrence of Spread F is more or less a daily phenomenon in the equatorial and low latitudinal stations during high to moderate sunspot number years. In this paper efforts have been made to identify possible precursors of Equatorial Spread F (ESF) using the Total Electron Content (TEC) data of seven GAGAN (GPS Aided Geo Augmented Navigation) stations in India during the two equinoxes of moderate sunspot number year 2004. Large Scale Periodic Structures found prior to TEC bite out can be taken as possible precursors to ESF. A threshold value of the peak to peak amplitude of this wave structure is chosen 2.6 TEC unit above which there is a possibility of ESF or TEC bite out with S4 > 0.26.  相似文献   

13.
This paper presents an analysis of the Total Electron Content (TEC) derived from the International GNSS Service receiver (formerly IGS) at Malindi (2.9°S, 40.1°E), Kenya for the periods 2004–2006 during the declining phase of solar cycle 23. The diurnal, monthly and seasonal variations of the TEC are compared with TEC from the latest International Reference Ionosphere model (IRI-2007). The GPS–TEC exhibits features such as an equatorial noon time dip, semi-annual variations, Equatorial Ionization Anomaly and day-to-day variability. The lowest GPS–TEC values are observed near the June solstice and September equinox whereas largest values are observed near the March equinox and December solstice. The mean GPS–TEC values show a minimum at 03:00 UT and a peak value at about 10:00 UT. These results are compared with the TEC derived from IRI-2007 using the NeQuick option for the topside electron density (IRI–TEC). Seasonal mean hourly averages show that IRI-2007 model TEC values are too high for all the seasons. The high prediction primarily occur during daytime hours till around midnight hours local time for all the seasons, with the highest percentage deviation in TEC of more 90% seen in September equinox and lowest percentage deviation in TEC of less than 20% seen in March equinox. Unlike the GPS–TEC, the IRI–TEC does not respond to geomagnetic storms and does overestimate TEC during the recovery phase of the storm. While the modeled and observed data do correlate so well, we note that IRI-2007 model is strongly overestimating the equatorial ion fountain effect during the descending phase of solar cycle, and this could be the reason for the very high TEC estimations.  相似文献   

14.
利用位于赤道异常区的深圳站(22.59°N,113.97°E)2011年1月至2012年12月及2015年1月至2015年12月监测到的GPS-TEC数据,统计分析华南地区电离层闪烁与TEC耗空同时出现、电离层闪烁单独出现和TEC耗空单独出现3种现象的时间和空间分布特性.结果表明:这3种现象均主要发生在春秋季节;闪烁与TEC耗空同时出现、闪烁单独出现和TEC耗空单独出现分别主要发生在纬度为19°-23°N,21°-24°N和24°-26°N的空间区域.探测到闪烁和TEC耗空同时出现、闪烁单独出现和TEC耗空单独出现的时间分别主要分布在20:00LT-22:00LT,21:00LT-23:00LT和22:30LT-23:30LT.闪烁与TEC耗空同时出现、闪烁单独出现和TEC耗空单独出现3种现象的时间和空间分布特性对应了华南地区不规则体和赤道等离子体泡(EPBs)从产生到消失的演变过程.   相似文献   

15.
The equatorial ionosphere and thermosphere constitute a coupled system, with its electro dynamical and plasma physical processes being responsible for a variety of ionospheric phenomena peculiar to the equatorial region. The most important of these phenomena are: the equatorial electrojet (EEJ) current system and its instabilities, the equatorial ionization anomaly (EIA), and the plasma instabilities/irregularities of the night ionosphere (associated with the plasma bubble events – ESF). They constitute the major topics of investigations having both scientific and practical objectives. The tidal wind interaction with the geomagnetic field is responsible for the atmospheric dynamo electric fields, that together with the wind system, drives the major phenomena, under quiet conditions. Drastic modifications of these phenomena can occur due to magnetospheric forcing under solar-, interplanetary- and magnetospheric disturbances. They can also undergo significant modifications due to forcing by atmospheric waves (such as planetary- and atmospheric gravity waves) propagating upward or from extra tropics. This article will focus on the ambient conditions of the ionosphere–thermosphere system and the electro dynamics and plasma instability processes that govern the plasma irregularity generation. Major emphasis is given to problems related to the structuring of the equatorial night ionosphere through plasma bubble/ESF irregularity processes. Specific topics to be covered will include: equatorial electric fields, thermospheric winds, sunset electrodynamic processes, plasma drifts, EEJ plasma instability/irregularity generation, nighttime/post sunset plasma bubble irregularity generation, and very briefly, disturbance electric fields and winds and their effect on the ionization anomaly, the TEC and ESF/plasma bubble irregularities.  相似文献   

16.
在对欧空局火星快车探测器搭载的MARSIS雷达的浅表层探测数据进行校准过程中,获得了火星电离层的总电子含量(total electron content,TEC)观测数据。利用该数据,计算火星低纬度地区电离层的峰值电子密度和标高;并对其进行统计分析发现,在低纬度地区,火星冬季电离层的标高和峰值电子密度均较夏季高,即冬季电离层较夏季更显著,且春季电离层的电子密度梯度最大。  相似文献   

17.
Total electron content (TEC) over Tucumán (26.9°S, 294.6°W) measured with Faraday technique during the high solar activity year 1982, is used to check IRI 2001 TEC predictions at the southern crest of the equatorial anomaly region. Comparisons with IRI 90 are also made. The results show that in general IRI overestimates TEC values around the daily minimum and underestimates it the remaining hours. Better predictions are obtained using ground ionosonde measurements as input coefficients in the IRI model. The results suggest that for hours of maximum TEC values the electron density profile is broader than that assumed by the model. The main reason for the disagreement would be the IRI shape of the electron density profile.  相似文献   

18.
The F layer critical frequency (foF2) as measured by Digisondes in the equatorial and low latitude locations in Brazil is analyzed to investigate the seasonal and solar flux controls of the intensity of the equatorial ionization anomaly (EIA) in the equinoctial month of March. The analysis also included the total electron content (TEC) as measured by a GPS receiver operated at the EIA crest location. The foF2 data set covered a period of large solar flux variation from 1996 to 2003, while the GPS TEC data was for a period in 2002–2003 when the solar flux parameter F10.7 underwent large variations, permitting in both cases an examination of the solar flux effects on these parameters. The seasonal variation pattern in TEC shows a maximum in equinoctial months and a minimum in June solstice, with similar variations for foF2. The solar flux dependence of the TEC is a maximum during equinoxes, especially for post-sunset TEC values at times when the latitudinal distribution is controlled by the equatorial evening plasma fountain processes. Significant variations with local time are found in the degree of solar flux dependence for both the TEC and EIA. The EIA intensity shows large dependence on F10.7 during post-sunset to midnight hours. These results are discussed in comparison with their corresponding IRI representations.  相似文献   

19.
磁暴期间全球TEC扰动特性分析   总被引:3,自引:1,他引:2       下载免费PDF全文
磁暴期间白天电离层总电子含量(TEC)大幅度扰动.TEC扰动与磁暴发生时的世界时(UT)有关.利用7年的数据对TEC对磁暴的响应进行统计研究.结果显示,磁暴期间白天TEC增大明显,且在午后TEC的增大比例有一个高峰.在18:00UT-04:00UT,南美地区与其他地区相比TEC增长较大,这可能与白天的光照有关.为了研究TEC变化与磁暴的关系,结合同样时间段的Dst指数,把TEC数据分为磁暴日(Dst<-100nT)和平静日(Dst>-50nT).研究发现,将TEC前移2h,低纬日侧地区TEC增大值随着世界时的变化与Dst变化的负相关性较好,相关系数为-0.75.在中纬度地区,将TEC扰动前移1h,相关系数为-0.61.这可能是行进式大气扰动携带着赤道向的子午风,由极区向低纬传播引起.可以认为,TEC的变化可能是由磁暴引起的.在高纬地区,TEC增大值随着世界时的变化与Dst变化的相关性较差.这可能是由于太阳高度角较低,光辐射通量较小,导致电子密度的增加不明显.   相似文献   

20.
The present study reports the analysis of GPS based TEC for our station Surat (21.16°N, 72.78°E) located at the northern crest of equatorial anomaly region in India at times close to some earthquake events (M ? 5) during the year 2009 in India and its neighbouring regions. The TEC data used in the study are obtained from GPS Ionospheric Scintillation and TEC Monitoring (GISTM) system. The TEC data has been analysed corresponding to 11 earthquakes in low solar activity period and quiet geomagnetic condition. We found that, out of 11 cases of earthquakes (M > 5) there were seven cases in which enhancement in TEC occurred on earthquake day and in other four cases there was depletion in TEC on earthquake day. The variation in refractivity prior to earthquake was significant for the cases in which the epicentre lied within a distance of 600 km from the receiving station. By looking into the features on temporal enhancement and depletion of TEC a prediction was made 3–2 days prior to an earthquake (on 28 October 2009 in Bhuj – India). The paper includes a brief discussion on the method of potentially identifying an impending earthquake from ionospheric data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号