首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Using the Clark Lake Radioheliograph data we present direct evidence that type III electron streams propagate in dense coronal streamers. We also present imaging observations of meter-decameter microbursts, which appear to be similar to those observed in hard X-rays. At meter-decameter wavelengths, these microbursts appear to be due to plasma radiation. From observations made with ISSE-3, we discuss the characteristics of hectometer and kilometer wavelength radio bursts. In particular, we show that from studies of type III storms that the exciter electrons propagate along spiral structures, where the density is enhanced and that there is an acceleration of the solar wind. We discuss type II bursts at kilometer wavelengths, compare them with meter type II bursts and discuss their association with interplanetary shocks. We show that the interaction between type III electron streams and shocks at kilometer wavelengths can provide information on the interplanetary shock geometry. Finally, we discuss the possibility that some shock associated (SA) events may be emissions caused by electrons accelerated lower in the atmosphere rather than high in the corona in type II shocks.Recent advances in solar research have resulted from new work on plasma radiation theory, new observations of active regions and flares across the electromagnetic spectrum and the availability of spacecraft in situ measurements of solar ejecta. In this paper, we review some results obtained with the Clark Lake multifrequency radioheliograph at meter-decameter wavelengths and from satellite multifrequency directive observations at hectometer and kilometer wavelengths. We present evidence that type III electrons propagate in dense coronal streamers, and that frequently observed microbursts (presumably of type III) at meter-decameter wavelengths are due to plasma radiation. We discuss observations of hectometer and kilometer type III radio storms which reveal information about active region structures, interplanetary magnetic field configuration, and solar wind acceleration. We also discuss kilometer type II bursts, interactions between type III electrons and interplanetary shocks, and present some new results on shock associated (SA) events.  相似文献   

2.
统计分析了太阳第23周期间(2000年7月至2004年9月)在625~1500,MHz,2600~3800,MHz和5200~7600,MHz范围频谱仪观测到的Ⅲ型射电爆发. 给出了Ⅲ型爆发的分布、寿命、频率漂移率、偏振度和频率带宽. 结果显示, 频率漂移率和频率带宽的平均值随频率的增加而增大, 寿命和偏振度的平均值既不是常数也不是在宽频延伸上保持均匀不变的.最多的Ⅲ型爆发分布在625~3800,MHz范围内, 且随频率的增加而增多. 分析表明, 电子加速和能量释放地点主要是在分米波范围内, 这个频率范围的特征可能与分米波段上的磁位形有关, 并且与主耀斑地点附近磁重联区中的电子加速有关. 然而, 还有相当数量的Ⅲ型爆发发生在5200~7600,MHz范围内, 这个特征表明电子加速的地点是在一个日冕的宽范围中. 关于厘米relax-relax 分米波段Ⅲ型爆发的辐射机制最可能包含相干的等离子体辐射或电子回旋脉泽辐射过程.   相似文献   

3.
Employing coronagraphic and EUV observations close to the solar surface made by the Solar Terrestrial Relations Observatory (STEREO) mission, we determined the heliocentric distance of coronal mass ejections (CMEs) at the starting time of associated metric type II bursts. We used the wave diameter and leading edge methods and measured the CME heights for a set of 32 metric type II bursts from solar cycle 24. We minimized the projection effects by making the measurements from a view that is roughly orthogonal to the direction of the ejection. We also chose image frames close to the onset times of the type II bursts, so no extrapolation was necessary. We found that the CMEs were located in the heliocentric distance range from 1.20 to 1.93 solar radii (Rs), with mean and median values of 1.43 and 1.38 Rs, respectively. We conclusively find that the shock formation can occur at heights substantially below 1.5 Rs. In a few cases, the CME height at type II onset was close to 2 Rs. In these cases, the starting frequency of the type II bursts was very low, in the range 25–40 MHz, which confirms that the shock can also form at larger heights. The starting frequencies of metric type II bursts have a weak correlation with the measured CME/shock heights and are consistent with the rapid decline of density with height in the inner corona.  相似文献   

4.
From a combined analysis of radioheliographic observations and white light images of the Corona, it is shown that metric continua onsets or enhancements are associated with a great variety of dynamical changes of the Corona. It is found that if the most spectacular radio bursts (type IV) are associated with mass ejection transients, the more common noise storm onsets or enhancements are systematically associated with coronal changes which are not necessarly mass ejections.Simultaneous observations of Radio type III bursts and Hα mass ejecta are related. We are looking to the signature at low levels in the corona of the electron beam acceleration triggering type III bursts. The results deal with the relationship between the type III occurrence and optical features : the presence of velocities in Hα, the shape of Hα line which reveals trubulent motions and the probable existence of a shock wave.  相似文献   

5.
First recognized by Wu and Lee (Ap. J. 230, 621, 1979), electron-cyclotron masers can be activated under very mild conditions. Large growth rates can occur even for relatively mild anisotropies in the electron velocity distribution, e.g., the one-sided loss cones that commonly occur when electrons with small pitch angles precipitate into high density regions at the footpoints of flaring loops while others are reflected in the converging field in the corona. Maser action can plausibly occur at the second harmonic of the local gyrofrequency and so explain certain very bright (? 1010 K) microwave bursts from the sun and other stars. However, the preponderance of the energy is at the first harmonic.We suggest that masers operating at the local gyrofrequency in a flaring loop generate radiation at decimeter wavelengths that is a significant fraction of the total energy of the flare, in fact (and not coincidentally) comparable with the energy in electrons associated with hard X-ray bursts. Essentially all of the radio energy is trapped in the corona and serves to produce localized heating in a volume large compared with the energy release region. Thus it can transfer energy by radiation from one magnetic loop to another, possibly inducing further instabilities, and spreading the course of the flare. Eventually the energy probably escapes the corona as soft X-rays. The electron-cyclotron maser saturates by extracting the perpendicular energy of the electrons, thereby diffusing them into the loss cone at the maximum possible rate; the enhanced precipitation into the footpoints can produce bright emission in hard X-rays, EUV and Hα and remove any necessity for directive acceleration in the energy release region.Details of the proposed mechanism and effects are contained in two papers by Melrose and Dulk (Ap. J. 259, 1982).This work was sponsored by NASA under grants NAGW-91 and NSG-7287 to the University of Colorado.  相似文献   

6.
We present an analysis of five microflares, three observed simultaneously by RHESSI in hard X-rays and Nobeyama RadioHeliograph (NoRH) in microwaves (17 GHz) and two observed by RHESSI and Nancay RadioHeliograph (NRH) at metric wavelengths (150–450 MHz). Since we have no radio imaging telescopes simultaneously operating at microwave and meter wavelengths in the same time zone, we are obliged to use a different set of metric events in contrast to that used for comparison with the two radio wavelengths. We are interested in using the locations and other imaging characteristics of the events from both RHESSI and radio observations instead of just temporal correlation. So we have used the Nancay (France) metric radioheliograph at 150–450 MHz for this purpose. Here we describe the properties of five events – three in microwaves and two at metric wavelengths. We discuss the brightness temperatures, emission measures and the hard X-ray spectral properties of these microevents. One sees small (mini) flaring loops clearly in NoRH and RHESSI images. The microwave emission often seems to come from the RHESSI foot points (for higher energies), and from the entire small (mini) flaring loop (for lower energies).The RHESSI microflares seem to be associated in position with metric type III bursts. Frequently, the hard X-ray spectrum of the microwave associated RHESSI microflares can be fit by a thermal component at low energies (∼3–12 keV) and a nonthermal component at higher energies (∼12–20 keV).  相似文献   

7.
Solar radio type IV bursts can sometimes show directivity, so that no burst is observed when the source region in located far from the solar disk center. This has recently been verified also from space observations, at decameter wavelengths, using a 3D-view to the Sun with STEREO and Wind satellites. It is unclear whether the directivity is caused by the emission mechanism, by reduced radio wave formation toward certain directions, or by absorption/blocking of radio waves along the line of sight. We present here observations of three type IV burst events that occurred on 23, 25, and 29 July 2004, and originated from the same active region. The source location of the first event was near the solar disk center and in the third event near the west limb. Our analysis shows that in the last two events the type IV bursts experienced partial cut-offs in their emission, that coincided with the appearance of shock-related type II bursts. The type II bursts were formed at the flanks and leading fronts of propagating coronal mass ejections (CMEs). These events support the suggestion of absorption toward directions where the type II shock regions are located.  相似文献   

8.
Solar radio bursts (SRBs) are the signatures of various phenomenon that happen in the solar corona and interplanetary medium (IPM). In this article, we have studied occurrence of Type III bursts and their association with the Sunspot number. This study confirms that occurrence of Type III bursts correlate well with Sunspot number. Further, using the data obtained using e-CALLISTO network, we have investigated drift rates of isolated Type III bursts and duration of the group of Type III bursts. Since Type II, Type III and Type IV bursts are signatures of solar flares and/or CMEs, we can use the radio observations to predict space weather hazards. In this article, we have discussed two events that have caused near Earth radio blackouts. Since e-CALLISTO comprises more than 152 stations at different longitudes, we can use it to monitor the radio emissions from the solar corona 24 h a day. Such observations play a crucial role in monitoring and predicting space weather hazards within few minutes to hours of time.  相似文献   

9.
Two homologous solar bursts were recorded on May 29, 1980 at 1028 UT and at 1147 UT from the Hale region 16864. The measurements were done at 8 mm wavelength at the Metsähovi Radio Research Station using a 14 meter radio telescope. The time series of the bursts were similar even in the small details. The rise time of both bursts was about 10 seconds and the peak flux density was 3.3 sfu at 1028 UT and 1.2 sfu at 1147 UT. Both bursts were composed of several elementary spikes which were typically 3 seconds apart from each other. The maximum of the gyro-synchrotron type spectrum was close to 15 GHz. The time profile of the bursts, elementary spikes and the frequency spectrum indicated that the origin of these homologous microwave bursts was in a magnetic structure with several loops and that the same complex loop structure was producing energy during both bursts.  相似文献   

10.
We have analysed energetic storm particle (ESP) events in 116 interplanetary (IP) shocks driven by front-side full and partial halo coronal mass ejections (CMEs) with speeds >400 km s?1during the years 1996–2015. We investigated the occurrence and relationships of ESP events with several parameters describing the IP shocks, and the associated CMEs, type II radio bursts, and solar energetic particle (SEP) events. Most of the shocks (57 %) were associated with an ESP event at proton energies >1 MeV.The shock transit speeds from the Sun to 1 AU of the shocks associated with an ESP event were significantly greater than those of the shocks without an ESP event, and best distinguished these two groups of shocks from each other. The occurrence and maximum intensity of the ESP events also had the strongest dependence on the shock transit speed compared to the other parameters investigated. The correlation coefficient between ESP peak intensities and shock transit speeds was highest (0.73 ± 0.04) at 6.2 MeV. Weaker dependences were found on the shock speed at 1 AU, Alfvénic and magnetosonic Mach numbers, shock compression ratio, and CME speed. On average all these parameters were significantly different for shocks capable to accelerate ESPs compared to shocks not associated with ESPs, while the differences in the shock normal angle and in the width and longitude of the CMEs were insignificant.The CME-driven shocks producing energetic decametric–hectometric (DH) type II radio bursts and high-intensity SEP events proved to produce also more frequently ESP events with larger particle flux enhancements than other shocks. Together with the shock transit speed, the characteristics of solar DH type II radio bursts and SEP events play an important role in the occurrence and maximum intensity of ESP events at 1 AU.  相似文献   

11.
Initial results of a combined study of electron events using the 3DP experiment on the WIND spacecraftand the Nançay Radioheliograph (NRH) are presented. A total of 57 electron events whose solar release time could be inferred from WIND/3DP observations occurred during NRH observing times. In 40 of them a distinct signature was detected in maps at decimetric and metric wavelengths (dm-m-λ) taken by the NRH. These events are equally distributed among two categories: (1) Electron release together with dm-m-λ bursts of a few minutes duration: these events are also accompanied by decametric-hectometric type III bursts seen by WAVES/WIND. They correspond to the well-known impulsive electron events. (2) Electron release during long duration (several tens of minutes) dm-m-λ emission: the electrons are most often released more than ten minutes after the start of the radio event. In the majority of cases the dm-m-λ radio source changes position, size, and/or intensity near the time of electron release.  相似文献   

12.
The solar physics studies in China during 2004-2006 from solar interior to solar atmospheres and solar-interplanetary space are summarized. These researches are arranged under the topics of solar interior, photosphere, chromosphere and transition region, corona, flares and CMEs (and the associated radio bursts, X-ray/γ-ray bursts and particle acceleration), solar wind, solar cycle, and ground-based instrumentation.  相似文献   

13.
利用光学、射电、软X射线和硬X射线观测资料,对1986年2月系列太阳爆发中最大的两个耀斑作相似与相异性的分析,解释它们近地空间效应的区别,对该系列太阳爆发事件和叠加在一起的地球事件作认证研究.   相似文献   

14.
Due to the lack of simultaneous high sensitivity/time resolution observations at mm- cm-λ and m-λ a program on such investigations has been carried out with data obtained by INPE at Itapetinga and by the Astronomical Observatory of Trieste. Preliminary results obtained by comparing mm-wave burst structures with 408, 327 and 237 MHz indicate that i) for majority of major time structures (time scales of the order of 1 sec) observed at 22 GHz bursts, corresponding type III bursts have been observed at 237 MHz, however ii) start times at mm-λ and m-λ are not often coincident at two wavelengths. These observations favour the hypothesis of (a) time dependent acceleration of energetic electrons and (b) burst emission is the response to a multiple injection of energetic electrons.  相似文献   

15.
A series of three flares of GOES class M, M and C, and a CME were observed on 20 January 2004 occurring in close succession in NOAA 10540. Types II, III, and N radio bursts were associated. We use the combined observations from TRACE, EIT, Hα images from Kwasan Observatory, MDI magnetograms, GOES, and radio observations from Culgoora and Wind/ WAVES to understand the complex development of this event. We reach three main conclusions. First, we link the first two impulsive flares to tether-cutting reconnections and the launch of the CME. This complex observation shows that impulsive quadrupolar flares can be eruptive. Second, we relate the last of the flares, an LDE, to the relaxation phase following forced reconnections between the erupting flux rope and neighbouring magnetic field lines, when reconnection reverses and restores some of the pre-eruption magnetic connectivities. Finally, we show that reconnection with the magnetic structure of a previous CME launched about 8 h earlier injects electrons into open field lines having a local dip and apex (located at about six solar radii height). This is observed as an N-burst at decametre radio wavelengths. The dipped shape of these field lines is due to large-scale magnetic reconnection between expanding magnetic loops and open field lines of a neighbouring streamer. This particular situation explains why this is the first N-burst ever observed at long radio wavelengths.  相似文献   

16.
本文介绍了太阳L260°活动概况,并计算了黑子群的位置漂移及对应的射电缓变源.北京天文台2.84GHz射电望远镜在该活动区观测到8次特大的射电爆发(流量超过1000s.f.u.),其中4次(1991年5月16日,6月9日,6月11日,8月25日)射电爆发时变曲线十分相似而且这些微波爆发都与Ⅱ型Ⅲ型Ⅳ型米波爆发有良好的对应.可能说明该活动区所对应的日冕在长时间内存在一种磁场位形结构,这种磁场位形结构容易产生日冕物质抛射.   相似文献   

17.
Very Large Array (VLA) observations at 20 and 91 cm wavelength are compared with data from the SOHO (EIT and MDI) and RHESSI solar missions to investigate the evolution of decimetric Type I noise storms and Type III bursts and related magnetic activity in the photosphere and corona. The combined data sets provide clues about the mechanisms that initiate and sustain the decimetric bursts and about interactions between thermal and nonthermal plasmas at different locations in the solar atmosphere. On one day, frequent, low-level hard X-ray flaring observed by RHESSI appears to have had no clear affect on the evolution of two closely-spaced Type I noise storm sources lying above the target active region. EIT images however, indicate nearly continuous restructuring of the underlying EUV loops which, through accompanying low-level magnetic reconnection, might give rise to nonthermal particles and plasma turbulence that sustain the long-lasting Type I burst emission. On another day, the onset of an impulsive hard X-ray burst and subsequent decimetric burst emission followed the gradual displacement and coalescence of a small patch of magnetic magnetic polarity with a pre-existing area of mixed magnetic polarity. The time delay of the impulsive 20 and 91 cm bursts by up to 20 min suggests that these events were unlikely to represent the main sites of flare electron acceleration, but instead are related to the rearrangement of the coronal magnetic field after the main flare at lower altitude. Although the X-ray flare is associated with the decimetric burst, the brightness and structure of a long-lasting Type I noise storm from the same region was not affected by the flare. This suggests that the reconfiguration of the coronal magnetic fields and the subsequent energy release that gave rise to the impulsive burst emission did not significantly perturb that part of the corona where the noise storm emission was located.  相似文献   

18.
Radio emissions during and outside solar flares are tracers of energetic electrons from the bottom of the corona to the interplanetary space. This review focusses on impulsive flares, where joint analyses of radio, hard X-ray and γ-ray observations proved to be powerful probes of the properties of accelerated electrons and of the sites in the corona where they are accelerated. Evidence of electron acceleration and transport in the corona from microwave imaging and decimetre wave spectroscopy is reviewed and compared, and recent work on the interpretation of microwave spectra in terms of energetic electron spectra is discussed. The two directions for future instrumentation are the extension to shorter wavelengths, with the aim of probing relativistic electrons, and solar dedicated spectral imaging from centimetric to metric waves to provide a unified view of the acceleration signatures that stem so far from different instruments with either spectroscopic or imaging capabilities.  相似文献   

19.
CME在产生和发展过程中与日冕和行星际介质相互作用并发出不同波长的射电辐射.在研究了无CME时空间等离子体的各种辐射机制基础上,统计分析了1999年2月至1999年8月期间有较大的CME发生情况下,在CME影响下L1拉格朗日点附近等离子体参数发生变化后的射电辐射机制.分析结果表明,其射电辐射机制主要是轫致辐射、微量的回旋辐射和更加微弱的复合辐射.此外,分析讨论了1999年2月至1999年8月期间与CME共生的太阳微波爆发.分析结果表明,与CME共生的是微波逐渐型爆发、尖峰爆发,其辐射机制主要是轫致辐射、回旋共振辐射、等离子体辐射及电子回旋脉泽辐射.  相似文献   

20.
At mesospheric heights, VHF radar measurements reveal strong signal power bursts which have the same period as simultaneously observed short-period velocity oscillations. Both the power bursts and the velocity oscillations occur in layers of maximum vertical wind shear generated by tidal or long-period gravity waves with apparent vertical wavelengths of the order of 10 km. A comparison with similar power bursts measured in the troposphere during a jet stream passage leads to the conclusion that the short-period velocity oscillations are due to a Kelvin-Helmholtz instability. This instability in turn generates superadiabatic lapse rates so that strong turbulence can occur which produces the observed signal power bursts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号