首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
We have successfully detected solar neutrons at ground level in association with the X17.0 solar flare that occurred on 2005 September 7. Observations were made with the solar neutron telescopes and neutron monitors located in Bolivia and Mexico. In this flare, large fluxes of hard X-rays and γ-rays were observed by the GEOTAIL and the INTEGRAL satellites. The INTEGRAL observations include the 4.4 MeV line γ-rays of 12C. The data suggest that solar neutrons were produced at the same time as these hard electromagnetic radiations. We have however found an apparent discrepancy between the observed and the expected time profiles. This fact suggests a possible extended neutron emission.  相似文献   

2.
We continue monitoring supernova remnant (SNR) 1987A with the Chandra X-ray Observatory. As of 2004 January, bright X-ray spots in the northwest and the southwest are now evident in addition to the bright eastern ring. The overall X-ray spectrum, since 2002 December, can be described by a planar shock with an electron temperature of ∼2.1 keV. The soft X-ray flux is now 8 × 10−13 ergs cm−2 s−1, which is about five times higher than four years ago. This flux increase rate is consistent with our prediction based on an exponential density distribution along the radius of the SNR between the HII region and the inner ring. We still have no direct evidence of a central point source, and place an upper limit of LX = 1.3 × 1034 ergs s−1 on the 3–10 keV band X-ray luminosity.  相似文献   

3.
The absence of a supernova remnant (SNR) shell surrounding the Crab and other plerions (pulsar wind nebulae) has been a mystery for three decades. G21.5-0.9 is a particularly intriguing plerionic SNR in which the central powering engine is not yet detected. Early CHANDRA observations revealed a faint extended X-ray halo which was suggested to be associated with the SNR shell; however its spectrum was non-thermal, unlike what is expected from an SNR shell. On the other hand, a plerionic origin to the halo is problematic since the X-ray plerion would be larger than the radio plerion. We present here our analysis of an integrated 245 ks of archival CHANDRA data acquired with the High-Resolution Camera (HRC) and 520 ks acquired with the Advanced CCD Imaging Spectrometer (ACIS). This study provides the deepest and highest resolution images obtained to date. The resulting images reveal for the first time: (1) a limb-brightened morphology in the eastern section of the halo, and (2) a rich structure in the inner (40″-radius) bright plerion including wisps and a double-lobed morphology with an axis of symmetry running in the northwest–southeast direction. Our spatially resolved spectroscopic study of the ACIS-I data indicates that the photon index steepens with increasing distance from the central point source out to a radius of 40″ then becomes constant at ∼2.4 in the X-ray halo (for a column density NH = 2.2 × 1022 cm−2). No line emission was found from the eastern limb; however marginal evidence for line emission in the halo’s northern knots was found. This study illustrates the need for deep CHANDRA observations to reveal the missing SNR material in Crab-like plerions.  相似文献   

4.
The satellite-based experiment, GLAST (Gamma-ray Large Area Space Telescope), is under construction and is planned to measure the cosmic γ-ray flux in the energy range 20 MeV to >300 GeV, with supporting measurements for γ-ray bursts from 10 keV to 25 MeV. With its launch in 2007, GLAST will open a new and important window on a wide variety of high-energy phenomena, including exotic relics from the Big Bang. Among these may be the decay/annihilation products of the hypothesized super symmetric image of the known particles. Single-photon energy thresholds for channels leading to such final states have been excluded in a model-dependent manner by accelerator searches to energies greater than 50 GeV. The ability of GLAST to set limits on this important component of cosmological evolution is presented along with an update on the present status of this mission.  相似文献   

5.
Observations and their analysis of the thermal X-ray spectrum of the M2 flare on 2003 April 26 are described. The spectrum observed by the RHESSI mission cover the energy range from ∼5 to ∼50 keV. With its ∼1-keV spectral resolution, intensities and equivalent widths of two line complexes, the Fe line group at 6.7 keV (mostly due to Fe xxv lines and Fe xxiv satellites) and the Fe/Ni line group at 8 keV (mostly due to higher-excitation Fe xxv lines and Ni xxvii lines) were obtained as a function of time through a number of flares. The abundance of Fe can also be determined from RHESSI spectra; it appears to be consistent with a coronal value for at least some times during the flare. Comparisons of RHESSI spectra with those from the RESIK crystal spectrometer on CORONAS-F show very satisfactory agreement, giving much confidence in the intensity calibration of both instruments.  相似文献   

6.
Gamma-ray emission from solar flares reveals information about the nature of the accelerated particles and about the physical conditions of the medium through which the accelerated particles are transported. In this paper, we present the gamma-ray line-production and loop transport models used in our calculations of high-energy emission. We discuss the calculated interaction time history, the depth distribution, the interacting-particle angular distribution, and fluence ratios of the narrow gamma-ray lines. We show the relationship between the γ-ray observables and the parameters of the transport and line-production models. For illustration, we use calculations of 4.44 MeV 12C nuclear deexcitation line-production. Applications of the calculations to flare observations by both SMM and RHESSI are also presented.  相似文献   

7.
The detection of a soft thermal X-ray component in the spectrum of a bright knot in the halo of the plerion G21.5-0.9 is reported. Using a collisional ionization equilibrium model for an hot optically thin plasma, a temperature of kT 0.12–0.24 keV, a mass of 0.3–1.0 M and a density of 1.6–6 cm−3 is derived. The spectral analysis suggests a possible overabundance of Silicon with respect to the solar value in the knot; if this will be confirmed this object may be a clump of shocked ejecta.  相似文献   

8.
We observed the radio and X-ray source G359.23–0.82, also known as “the Mouse”, with XMM-Newton. The X-ray image of this object shows a point-like source at the Mouse’s “head”, accompanied by a “tail” that extends for about 40″ westward. The morphology is consistent with that observed recently with Chandra [Gaensler, B.M., van der Swaluw, E., Camilo, F., et al. The Mouse that soared: high resolution X-ray imaging of the pulsar-powered bow shock G359.23–0.82, ApJ 616, 383–402, 2004]. The spectrum of the head can be described by a power-law model with a photon index Γ  1.9. These results confirm that the Mouse is a bow-shock pulsar wind nebula (PWN) powered by PSR J1747–2958. We found that the hydrogen column density toward the Mouse, NH = (2.60 ± 0.09) × 1022 cm−2, is 20%–40% lower than those toward two serendipitously detected X-ray bursters, SLX 1744–299 and SLX 1744–300. At a plausible distance of 5 kpc, the X-ray luminosity of the Mouse, L(0.5–10 keV) = 3.7 × 1034 erg s−1, is 1.5% of the pulsar’s spin-down luminosity. We detected a Type I X-ray burst from SLX 1744–300 and found a possible decrease of NH and persistent luminosity for this source, in comparison with those observed with ROSAT in 1992.  相似文献   

9.
Hard X-ray observations from the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) of the October 29, 2003 GOES X10 two-ribbon flare are used together with magnetic field observations from the Michelson Doppler Imager (MDI) onboard SoHO to compare footpoint motions with predictions from magnetic reconnection models. The temporal variations of the velocity v of the hard X-ray footpoint motions and the photospheric magnetic field strength B in footpoints are investigated. The underlying photospheric magnetic field strength is generally higher (B  700–1200 G) in the slower moving (v  20–50 km s−1) western footpoint than in the faster (v  20–100 km s−1) moving eastern source (∼100–600 G). Furthermore, a rough temporal correlation between the HXR flux and the product vB2 is observed.  相似文献   

10.
I will give a brief review of the recent development in the emission models of isolated, rapidly rotating neutron stars, focusing on the γ-ray radiation mechanism in their outer magnetospheres. By examining the Poisson equation for the electrostatic potential, I show that an active particle accelerator must extend from the vicinity of the neutron star surface to the vicinity of light cylinder. Furthermore, combining the Poisson equation with the Boltzmann equations for electrons/positrons and γ-rays, and assuming that the gap trans-field thickness is large compared to the longitudinal width, I demonstrate that the energy distribution of ultra-relativistic particles cannot be described by a power-law but by a quasi-monoenergetic distribution at the terminal Lorentz factor. The particles are accelerated in the gap and escape from it with large Lorentz factors. Is is shown that such energetic particles migrating outside of the gap contribute significantly to the γ-ray luminosity and reproduce the observed soft γ-ray spectrum between 100 MeV and 3 GeV for the Vela pulsar.  相似文献   

11.
The instability in the cosmic-ray precursor of a supernova shock is studied. The level of turbulence in this region determines the maximum energy of accelerated particles. The consideration is not limited by the case of weak turbulence. It is assumed that the Kolmogorov type nonlinear wave interactions together with the ion-neutral collisions restrict the amplitude of random magnetic field. As a result, the maximum energy of accelerated particles strongly depends on the age of a SNR. The average spectrum of cosmic rays injected in the interstellar medium in the course of adiabatic SNR evolution takes the approximate form E−2 at energies larger than 10–30 GeV/nucleon with the maximum energy that is close to the position of the knee in cosmic-ray spectrum at 4 × 1015 eV. At an earlier stage of SNR evolution – the ejecta-dominated stage, the particles are accelerated to higher energies and have a rather steep power-law distribution. These results suggest that the knee may mark the transition from the ejecta-dominated to the adiabatic evolution of SNR shocks which accelerate cosmic rays.  相似文献   

12.
The deleterious effects of accelerated heavy ions as component of the space radiation environment on living cells are of increasing importance for long duration human space flight activities. The most important aspect of such densely ionizing particle radiation is attributed to the type and quality of biological damage induced by them. This issue is addressed by investigating cell inactivation and mutation induction at the Hprt locus (coding for hypoxanthine-guanine-phosphoribosyl-transferase) of cultured V79 Chinese hamster cells exposed to densely ionizing radiation (accelerated heavy ions with different LETs from oxygen to gold, specific energies ranging from 1.9 to 69.7 MeV/u, corresponding LET values range from 62 to 13,223 keV/μm) and to sparsely ionizing radiation (200 kV X-rays). 30 spontaneous, 40 X-ray induced and 196 heavy ion induced 6-thioguanine resistant Hprt mutant colonies were characterized by Southern technique using the restriction enzymes EcoRI, PstI and BglII and a full length Hprt cDNA probe isolated from the plasmid pHPT12. Restriction patterns of the spontaneous Hprt mutants were indistinguishable from the wild type pattern, as these mutants probably contain only small deletions or even point mutations in the Hprt locus. In contrast, the overall spectrum of heavy ion induced mutations revealed a majority of partial or total deletions of the Hprt gene. With constant particle fluence (3 × 106 particles/cm2) the quality of heavy ion induced mutations in the Hprt locus depends on physical parameters of the beam (atomic number, specific energy, LET). This finding suggests a relationship between the type of DNA damage and track structure. The fraction of mutants with severe deletions in the Hprt locus after exposure to oxygen ions increases from 65% at 60 keV/μm up to a maximum (100%) at 300 keV/μm and declines with higher LET values to 75% at 750 keV/μm. With heavier ions (Ca- and Au-ions) and even higher LET-values this mutant fraction decreases to 58% at 13,200 keV/μm. Heavy ion induced DNA break points in the Hprt locus are not randomly distributed.  相似文献   

13.
The source of energy for cosmic-ray acceleration appears to be shock waves driven by supernova (SNe) ejecta. The great majority (80–90%) of SNe (SNII and SNIb) are formed by the core collapse of young, massive O and B stars. However, it has been known for more than forty years that the births of such massive stars in stellar clumps, termed OB associations, are correlated in space and time. The combined ejecta of core-collapse SNe, occurring at the deaths of these massive stars, create low-density (∼5.0 × 10−3 cm−3) superbubbles that reach dimensions of several hundred pc. The occurrence of correlated SNe in superbubbles affects not just the source of cosmic-ray energy, SNe shock waves, it impinges as well on the elemental and isotopic source abundances of cosmic-ray nuclei. We argue that the well-known anomalous cosmic-ray 22Ne/20Ne ratio, a factor of five times the Solar System ratio, results from a mixing of freshly synthesized nucleosynthetic material in supernova active cores of superbubbles. Although diluted by mixing with older, lower metallicity interstellar gas, the mean metallicities in the superbubble, SNe-dominated cores are high ∼3 times the Solar System value.  相似文献   

14.
The recent detection of a young pulsar powering “the Mouse”, G359.23  0.82, as well as detailed imaging of surrounding nebular X-ray emission, have motivated us to investigate the structural details and polarization characteristics of the radio emission from this axisymmetric source with a supersonic bow shock. Using polarization data at 3.6 and 6 cm, we find that the magnetic field wraps around the bow-shock structure near the apex of the system, but downnstream runs parallel to the inferred direction of the pulsar’s motion. The rotation measure (RM) distribution of the Mouse also suggests that the low degree of polarization combined with a high RM ahead of the pulsar result from internal plasma within the bow-shock region. In addition, using sub-arcsecond radio image of the Mouse, we identify modulations in the brightness distribution of the Mouse that may be associated with the unshocked pulsar wind behind the pulsar. Lastly, we discuss the relationship between the Mouse and its neighboring shell-type supernova remnant G359.1  0.5 and argue that these two sources could potentially have the same origin.  相似文献   

15.
The M1.5-class flare and associated coronal mass ejection (CME) of 16 February 2011 was observed with the Extreme ultraviolet Imaging Spectrometer on board the Hinode spacecraft. Spray plasma associated with the CME is found to exhibit a Doppler blue-shift of 850 km s?1 – one of the largest values reported from spectroscopy of the solar disk and inner corona. The observation is unusual in that the emission line (Fe xii 193.51 Å) is not observed directly, but the Doppler shift is so large that the blue-shifted component appears in a wavelength window at 192.82 Å, intended to observe lines of O v, Fe xi and Ca xvii. The Fe xii 195.12 Å emission line is used as a proxy for the rest component of 193.51 Å. The observation highlights the risks of using narrow wavelength windows for spectrometer observations when observing highly-dynamic solar phenomena. The consequences of large Doppler shifts for ultraviolet solar spectrometers, including the upcoming Multi-slit Solar Explorer (MUSE) mission, are discussed.  相似文献   

16.
Variations of galactic cosmic ray intensity have been studied based on the neutron monitors and interplanetary magnetic field experimental data for different ascending and descending epochs of solar activity. The dependence of the diffusion coefficient on the cosmic ray particles rigidity R is stronger in the maxima epoch than in the minima epoch of solar activity. For the period of 1977–1981 (qA > 0) the diffusion coefficient for the minimum epoch is, χmin  R0.7 ± 0.04 and for the maximum χmax  R1.3 ± 0.05; for the period of 1987–1990 (qA < 0), χmin  R0.8 ± 0.05 and χmax  R1.1 ± 0.04. The exponents νy and νz of the power spectral density of the By and Bz components of the IMF in the region of the frequencies (10−6– 4 × 10−6) Hz are larger for the minimum epoch of 1987 (νy  2.0 and νz  1.93) than for the maximum epoch of 1990 (νy  1.43 and νz  1.27).  相似文献   

17.
In the inner annular gap (IAG) model the γ-ray radiation sources are suggested to be located close to the null charge surface (NCS). A method to explore two geometric parameters (κ, λ) of the IAG model is given in this paper. Pulsar population statistics are proposed to test the radiation locations of γ-ray pulsars. Within the IAG model, predictions for the GLAST observation of γ-ray pulsars are also made.  相似文献   

18.
We present measurements of the thermal conductivity λ(t, P, L) = l/ρ(t, P, L) near the superfluid transition of 4He at saturated vapor pressure and confined in cylindrical geometries with radii L = 0.5 and 1.0 μm (t  T/Tλ(P)  1). For L = 1.0 μm measurements at six pressures P are presented. At and above Tλ the data are consistent with a universal scaling function F(X) = (L/ξo)x/ν(ρ/ρ0), X = (L/ξo)1/νt valid for all P (ρ0 and x are the pressure-dependent amplitude and effective exponent of the bulk resistivity ρ(t, P, ∞) = ρ0tx and ξ = ξ0tν is the correlation length). Indications of breakdown of scaling and universality are observed below Tλ.  相似文献   

19.
Recent Chandra and XMM-Newton observations reported evidence of two X-ray filaments G359.88−0.08 (SgrA-E) and G359.54+0.18 (the ripple filament) near the Galactic center. The X-ray emission from these filaments has a nonthermal spectrum and coincides with synchrotron emitting radio sources. Here, we report the detection of a new X-ray feature coincident with a radio filament G359.90−0.06 (SgrA-F) and show more detailed VLA, Chandra and BIMA observations of the radio and X-ray filaments. In particular, we show that radio emission from the nonthermal filaments G359.90−0.06 (SgrA-F) and G359.54+0.18 (the ripple) has a steep spectrum whereas G359.88−0.08 (SgrA-E) has a flat spectrum. The X-ray emission from both these sources could be due to synchrotron radiation. However, given that the 20 km s−1 molecular cloud, with its intense 1.2 mm dust emission, lies in the vicinity of SgrA-F, it is possible that the X-rays could be produced by inverse Compton scattering of far-infrared photons from dust by the relativistic electrons responsible for the radio synchrotron emission. The production of X-ray emission from ICS allows an estimate of the magnetic field strength of 0.08 mG within the nonthermal filament. This should be an important parameter for any models of the Galactic center nonthermal filaments.  相似文献   

20.
We present the results of a preliminary spectral analysis performed on the BeppoSAX and XMM observations of the Vela plerion. The broad energy range covered by the instruments on board the two observatories allows an evaluation of the spectral parameters of the high energy emission model and provides an indication on the morphology of the source emission above 10 keV. We confirm the softening of the PWN spectrum (3–10 keV band) at distances greater than 4′ from the pulsar and estimate the diameter of the high energy (>10 keV) emission region to be on the order of 25′–30′.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号