首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
We made a detailed study of the impulsive solar flare of GOES class X1.0 which occurred near the west limb on 2002 August 3, peak time 19:07 UT. There is particularly good data coverage of this event, with simultaneous observations in EUV, soft and hard X-rays available. We used TRACE 171 Å images to study the morphology and evolution of this event. Soft X-ray spectra in the wavelength range 3.34–6.05 Å measured by the RESIK Bragg crystal spectrometer on CORONAS-F were used for determination of the evolution of the flare plasma temperature. Data from the RHESSI instrument were used to investigate properties of the higher-temperature plasma during the flare.  相似文献   

2.
In this review I discuss the various γ-ray emission lines that can be expected and, in some cases have been observed, from radioactive explosive nucleosynthesis products. The most important γ-ray lines result from the decay chains of 56Ni, 57Ni, and 44Ti. 56Ni is the prime explosive nucleosynthesis product of Type Ia supernovae, and its decay determines to a large extent the Type Ia light curves. 56Ni is also a product of core-collapse supernovae, and in fact, γ-ray line emission from its daughter product, 56Co, has been detected from SN1987A by several instruments. The early occurrence of this emission was surprising and indicates that some fraction of 56Ni, which is synthesized in the innermost supernova layers, must have mixed with the outermost supernova ejecta.Special attention is given to the γ-ray line emission of the decay chain of 44Ti (44Ti  44Sc  44Ca), which is accompanied by line emission at 68, 78, and 1157 keV. As the decay time of 44Ti is ∼86 yr, one expects this line emission from young supernova remnants. Although the 44Ti yield (typically 10−5–10−4M) is not very high, its production is very sensitive to the energetics and asymmetries of the supernova explosion, and to the mass cut, which defines the mass of the stellar remnant. This makes 44Ti an ideal tool to study the inner layers of the supernova explosion. This is of particular interest in light of observational evidence for asymmetric supernova explosions.The γ-ray line emission from 44Ti has so far only been detected from the supernova remnant Cas A. I discuss these detections, which were made by COMPTEL (the 1157 keV line) and BeppoSAX (the 68 and 78 keV lines), which, combined, give a flux of (2.6 ± 0.4 ± 0.5) × 10−5 ph cm−2 s−1 per line, suggesting a 44Ti yield of (1.5 ± 1.0) × 10−4M. Moreover, I present some preliminary results of Cas A observations by INTEGRAL, which so far has yielded a 3σ detection of the 68 keV line with the ISGRI instrument with a flux that is consistent with the BeppoSAX detections. Future observations by INTEGRAL-ISGRI will be able to constrain the continuum flux above 90 keV, as the uncertainty about the continuum shape, is the main source of systematic error for the 68 and 78 keV line flux measurements. Moreover, with the INTEGRAL-SPI instrument it will be possible to measure or constrain the line broadening of the 1157 keV line. A preliminary analysis of the available data indicates that narrow line emission (i.e., Δv < 1000 km s−1) can be almost excluded at the 2σ level, for an assumed line flux of 1.9 × 10−5 ph cm−2 s−1.  相似文献   

3.
We study a solar flare hard X-ray (HXR) source observed by the Reuven Ramaty high energy solar spectroscopic imager (RHESSI) in which the HXR emission is almost entirely in a coronal loop so dense as to be collisionally thick at electron energies up to ∼45−60 keV. This contrasts with most events previously reported in which the HXR emission is primarily from the loop footpoints in the collisionally dense chromosphere. In particular, we show that the high loop column densities inferred from the GOES and RHESSI soft X-ray emission measure and the volume of the flare loop are consistent with the coronal thick-target interpretation of the HXR images and spectra. The high column densities observed already at the very beginning of the impulsive phase are explained by chromospheric evaporation during a preflare which, as Nobeyama 17 GHz radio images reveal, took place in the same set of nested loops as the main flare.  相似文献   

4.
An occulted solar flare occurred at about 06:07 UT on 2002, November 2. The RHESSI X-ray images show two separate parts. The lower part consists of a complete loop and the upper part a coronal source which well extends above the solar limb. The loop source shrank for about 3 min with a speed of ∼24 km s−1 during the early impulsive phase and then expanded at ∼7 km s−1, while the coronal source presented an upward motion at about 6 km s−1. We obtained the temperature map of the loop source from RHESSI image spectrum. The temperature of the loop increases with altitude, indicating that the reconnection X-point of this flare is located above the loop source. However, the apparent coronal source is the top of another independent large-scale loop.  相似文献   

5.
The GOES X3.9 flare on 03 November 2003 at ∼09:45 UT was observed from metric to millimetric wavelengths by the Nançay Radioheliograph (NRH), the Radio Solar Telescope Network (RSTN) and by radio instruments operated by the Institute of Applied Physics (University of Bern). This flare was simultaneously observed and imaged up to several 100 keV by the RHESSI experiment. The time profile of the X-ray emission above 100 keV and of the radio emissions shows two main parts, impulsive emission lasting about 3 min and long duration emission (partially observed by RHESSI) separated in time by 4 min. We shall focus here on the modulations of the broad-band radio continua and of the X-ray emissions observed in the second part of the flare. The observations suggest that gyrosynchrotron emission is the prevailing emission mechanism even at decimetric wavelengths for the broad-band radio emission. Following this interpretation, we deduce the density and the magnetic field of the decimetric sources and briefly comment on possible interpretations of the modulations.  相似文献   

6.
We continue monitoring supernova remnant (SNR) 1987A with the Chandra X-ray Observatory. As of 2004 January, bright X-ray spots in the northwest and the southwest are now evident in addition to the bright eastern ring. The overall X-ray spectrum, since 2002 December, can be described by a planar shock with an electron temperature of ∼2.1 keV. The soft X-ray flux is now 8 × 10−13 ergs cm−2 s−1, which is about five times higher than four years ago. This flux increase rate is consistent with our prediction based on an exponential density distribution along the radius of the SNR between the HII region and the inner ring. We still have no direct evidence of a central point source, and place an upper limit of LX = 1.3 × 1034 ergs s−1 on the 3–10 keV band X-ray luminosity.  相似文献   

7.
Gamma-ray emission from solar flares reveals information about the nature of the accelerated particles and about the physical conditions of the medium through which the accelerated particles are transported. In this paper, we present the gamma-ray line-production and loop transport models used in our calculations of high-energy emission. We discuss the calculated interaction time history, the depth distribution, the interacting-particle angular distribution, and fluence ratios of the narrow gamma-ray lines. We show the relationship between the γ-ray observables and the parameters of the transport and line-production models. For illustration, we use calculations of 4.44 MeV 12C nuclear deexcitation line-production. Applications of the calculations to flare observations by both SMM and RHESSI are also presented.  相似文献   

8.
On January 20, 2005, 7:02–7:05 UT the Aragats Multidirectional Muon Monitor (AMMM) located at 3200 m a.s.l. registered enhancement of the high energy secondary muon flux (threshold ∼5 GeV). The enhancement, lasting for 3 min, has statistical significance of ∼4σ and is related to the X7.1 flare seen by the GOES, and very fast (>2500 km/s) CME seen by SOHO, and the Ground Level Enhancements (GLE) #69 detected by the world-wide network of neutron monitors and muon detectors. The energetic and temporal characteristics of the muon signal from the AMMM are compared with the characteristics of other monitors located at the Aragats Space-Environmental Center (ASEC) and with other neutron and muon detectors. Since secondary muons with energies >5 GeV are corresponding to solar proton primaries with energies 20–30 GeV we conclude that in the episode of the particle acceleration at 7:02–7:05 UT 20 January 2005 solar protons were accelerated up to energies in excess of 20 GeV.  相似文献   

9.
The deleterious effects of accelerated heavy ions as component of the space radiation environment on living cells are of increasing importance for long duration human space flight activities. The most important aspect of such densely ionizing particle radiation is attributed to the type and quality of biological damage induced by them. This issue is addressed by investigating cell inactivation and mutation induction at the Hprt locus (coding for hypoxanthine-guanine-phosphoribosyl-transferase) of cultured V79 Chinese hamster cells exposed to densely ionizing radiation (accelerated heavy ions with different LETs from oxygen to gold, specific energies ranging from 1.9 to 69.7 MeV/u, corresponding LET values range from 62 to 13,223 keV/μm) and to sparsely ionizing radiation (200 kV X-rays). 30 spontaneous, 40 X-ray induced and 196 heavy ion induced 6-thioguanine resistant Hprt mutant colonies were characterized by Southern technique using the restriction enzymes EcoRI, PstI and BglII and a full length Hprt cDNA probe isolated from the plasmid pHPT12. Restriction patterns of the spontaneous Hprt mutants were indistinguishable from the wild type pattern, as these mutants probably contain only small deletions or even point mutations in the Hprt locus. In contrast, the overall spectrum of heavy ion induced mutations revealed a majority of partial or total deletions of the Hprt gene. With constant particle fluence (3 × 106 particles/cm2) the quality of heavy ion induced mutations in the Hprt locus depends on physical parameters of the beam (atomic number, specific energy, LET). This finding suggests a relationship between the type of DNA damage and track structure. The fraction of mutants with severe deletions in the Hprt locus after exposure to oxygen ions increases from 65% at 60 keV/μm up to a maximum (100%) at 300 keV/μm and declines with higher LET values to 75% at 750 keV/μm. With heavier ions (Ca- and Au-ions) and even higher LET-values this mutant fraction decreases to 58% at 13,200 keV/μm. Heavy ion induced DNA break points in the Hprt locus are not randomly distributed.  相似文献   

10.
The M1.5-class flare and associated coronal mass ejection (CME) of 16 February 2011 was observed with the Extreme ultraviolet Imaging Spectrometer on board the Hinode spacecraft. Spray plasma associated with the CME is found to exhibit a Doppler blue-shift of 850 km s?1 – one of the largest values reported from spectroscopy of the solar disk and inner corona. The observation is unusual in that the emission line (Fe xii 193.51 Å) is not observed directly, but the Doppler shift is so large that the blue-shifted component appears in a wavelength window at 192.82 Å, intended to observe lines of O v, Fe xi and Ca xvii. The Fe xii 195.12 Å emission line is used as a proxy for the rest component of 193.51 Å. The observation highlights the risks of using narrow wavelength windows for spectrometer observations when observing highly-dynamic solar phenomena. The consequences of large Doppler shifts for ultraviolet solar spectrometers, including the upcoming Multi-slit Solar Explorer (MUSE) mission, are discussed.  相似文献   

11.
Using high-resolution Hα, CaII 8542 Å and FeI 6302.5 Å Stokes spectral data obtained simultaneously with THEMIS in 2002 September, we have analyzed the spectra and the characteristics of a two-ribbon microflare (MF). The hard X-ray emission provides evidence of non-thermal particle acceleration in the microflare. The two-ribbons are located on either sides of the magnetic polarity inversion line. The non-thermal characteristics mainly appeared at the outer edges of the flare ribbons. It indicates that the instantaneous magnetic reconnection and the particle acceleration mainly took place at the outer edges of the flare ribbons. Using the Hα and CaII 8542 Å line profiles and the non-LTE calculation, we obtain the semi-empirical atmospheric model for the bright kernel of the MF. The result indicates that the temperature enhancement in the chromosphere is about 2000–2500 K.  相似文献   

12.
The absence of a supernova remnant (SNR) shell surrounding the Crab and other plerions (pulsar wind nebulae) has been a mystery for three decades. G21.5-0.9 is a particularly intriguing plerionic SNR in which the central powering engine is not yet detected. Early CHANDRA observations revealed a faint extended X-ray halo which was suggested to be associated with the SNR shell; however its spectrum was non-thermal, unlike what is expected from an SNR shell. On the other hand, a plerionic origin to the halo is problematic since the X-ray plerion would be larger than the radio plerion. We present here our analysis of an integrated 245 ks of archival CHANDRA data acquired with the High-Resolution Camera (HRC) and 520 ks acquired with the Advanced CCD Imaging Spectrometer (ACIS). This study provides the deepest and highest resolution images obtained to date. The resulting images reveal for the first time: (1) a limb-brightened morphology in the eastern section of the halo, and (2) a rich structure in the inner (40″-radius) bright plerion including wisps and a double-lobed morphology with an axis of symmetry running in the northwest–southeast direction. Our spatially resolved spectroscopic study of the ACIS-I data indicates that the photon index steepens with increasing distance from the central point source out to a radius of 40″ then becomes constant at ∼2.4 in the X-ray halo (for a column density NH = 2.2 × 1022 cm−2). No line emission was found from the eastern limb; however marginal evidence for line emission in the halo’s northern knots was found. This study illustrates the need for deep CHANDRA observations to reveal the missing SNR material in Crab-like plerions.  相似文献   

13.
We study the effect of the angular resolution on the determination of the angular properties of the facular radiance. We analyze photospheric intensity in the continuum, around the Ni 676.8 nm line, and longitudinal magnetic field along the line of sight, measured by the MDI instrument aboard SOHO with two spatial resolutions, 4″ and 1.2″ (2″ and 0.6″ pixels, respectively). The effect of the limited photometric sensitivity of the instrument and the limited information on the angular structure of the magnetic field tubes are considered. Our study of the high-resolution data shows that intensity contrast of magnetic features between 80 and 600 Gauss increases from centre to limb up to a maximum that occurs at higher heliocentric angles (θ) when obtained with higher resolution data than for lower resolution data. There is a suggestion that at heliocentric angles below about 75° there is only a monotonic increase in the contrast as one goes from cos (θ) = 1 to cos (θ) = 0.2.  相似文献   

14.
The detection of a soft thermal X-ray component in the spectrum of a bright knot in the halo of the plerion G21.5-0.9 is reported. Using a collisional ionization equilibrium model for an hot optically thin plasma, a temperature of kT 0.12–0.24 keV, a mass of 0.3–1.0 M and a density of 1.6–6 cm−3 is derived. The spectral analysis suggests a possible overabundance of Silicon with respect to the solar value in the knot; if this will be confirmed this object may be a clump of shocked ejecta.  相似文献   

15.
We have successfully detected solar neutrons at ground level in association with the X17.0 solar flare that occurred on 2005 September 7. Observations were made with the solar neutron telescopes and neutron monitors located in Bolivia and Mexico. In this flare, large fluxes of hard X-rays and γ-rays were observed by the GEOTAIL and the INTEGRAL satellites. The INTEGRAL observations include the 4.4 MeV line γ-rays of 12C. The data suggest that solar neutrons were produced at the same time as these hard electromagnetic radiations. We have however found an apparent discrepancy between the observed and the expected time profiles. This fact suggests a possible extended neutron emission.  相似文献   

16.
We present the results of a preliminary spectral analysis performed on the BeppoSAX and XMM observations of the Vela plerion. The broad energy range covered by the instruments on board the two observatories allows an evaluation of the spectral parameters of the high energy emission model and provides an indication on the morphology of the source emission above 10 keV. We confirm the softening of the PWN spectrum (3–10 keV band) at distances greater than 4′ from the pulsar and estimate the diameter of the high energy (>10 keV) emission region to be on the order of 25′–30′.  相似文献   

17.
PSR J0537−6910 is a young, energetic, rotation-powered X-ray pulsar with a spin period of 16 ms located in the Large Magellanic Cloud. We have searched for previously undetected radio pulsations (both giant and standard) from this pulsar in a 12-h observation taken at 1400 MHz with the Parkes 64-m radio telescope. The very large value of the magnetic field at the light cylinder radius suggests that this pulsar might be emitting giant radio pulses like those seen in other pulsars with similar field strengths. No radio emission of either kind was detected from the pulsar, and we have established an upper limit of ∼25 mJy kpc2 for the average 1400-MHz radio luminosity of PSR J0537−6910. The 5σ single-pulse detection threshold was ∼750 mJy for a single 80-μs sample. These limits are likely to be the best obtainable until searches with greatly improved sensitivity can be made with next-generation radio instruments.  相似文献   

18.
Individual giant radio pulses (GRPs) from the Crab pulsar last only a few microseconds. However, during that time they rank among the brightest objects in the radio sky reaching peak flux densities of up to 1500 Jy even at high radio frequencies. Our observations show that GRPs can be found in all phases of ordinary radio emission including the two high frequency components (HFCs) visible only between 5 and 9 GHz [Moffett, D.A., Hankins, T.H. Multifrequency radio observations of the Crab pulsar. Astrophys. J. 468, 779–783, 1996]. This leads us to believe that there is no difference in the emission mechanism of the main pulse (MP), inter pulse (IP) and HFCs. High resolution dynamic spectra from our recent observations of giant pulses with the Effelsberg telescope at a center frequency of 8.35 GHz show distinct spectral maxima within our observational bandwidth of 500 MHz for individual pulses. Their narrow band components appear to be brighter at higher frequencies (8.6 GHz) than at lower ones (8.1 GHz). Moreover, there is an evidence for spectral evolution within and between those structures. High frequency features occur earlier than low frequency ones. Strong plasma turbulence might be a feasible mechanism for the creation of the high energy densities of ∼6.7 × 104 erg cm−3 and brightness temperatures of ∼1031 K.  相似文献   

19.
We observed the radio and X-ray source G359.23–0.82, also known as “the Mouse”, with XMM-Newton. The X-ray image of this object shows a point-like source at the Mouse’s “head”, accompanied by a “tail” that extends for about 40″ westward. The morphology is consistent with that observed recently with Chandra [Gaensler, B.M., van der Swaluw, E., Camilo, F., et al. The Mouse that soared: high resolution X-ray imaging of the pulsar-powered bow shock G359.23–0.82, ApJ 616, 383–402, 2004]. The spectrum of the head can be described by a power-law model with a photon index Γ  1.9. These results confirm that the Mouse is a bow-shock pulsar wind nebula (PWN) powered by PSR J1747–2958. We found that the hydrogen column density toward the Mouse, NH = (2.60 ± 0.09) × 1022 cm−2, is 20%–40% lower than those toward two serendipitously detected X-ray bursters, SLX 1744–299 and SLX 1744–300. At a plausible distance of 5 kpc, the X-ray luminosity of the Mouse, L(0.5–10 keV) = 3.7 × 1034 erg s−1, is 1.5% of the pulsar’s spin-down luminosity. We detected a Type I X-ray burst from SLX 1744–300 and found a possible decrease of NH and persistent luminosity for this source, in comparison with those observed with ROSAT in 1992.  相似文献   

20.
Based upon multi-wavelength observations outlined by Huang et al. [Solar Phys. 213 (2003) 341], especially the dynamic spectrum at 4.5–7.5 GHz, we study the physical nature of the radio fine structures (FS) during the flare on August 25, 1999 in AR 8674 (S28E21). The main results are: (1) the helical loop of the event related to the FS is unstable for m = 1 kink mode; (2) the time interval between the beginning of reconnection and relaxation of the unstable loop, inferred from the observation, is quantitatively consistent with the results of the numerical simulations on kink unstable loop; (3) the magnetic field strength estimated from the fast kink standing wave is basically of the same order as that estimated from the photospheric magnetic field, which provides strong support to our analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号