首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
改变昆虫翅膀的褶皱结构可以优化翼型的气动性能,有利于微型飞行器的气动设计。以蜻蜓翼作为参考,采用计算流体力学(CFD)的方法计算了攻角范围为0°~20°,雷诺数范围为700~2300时褶皱位于前缘、尾缘和中部位置时三种翼型的滑翔气动性能。结果表明:在不同攻角和雷诺数下,褶皱位于尾缘的翼型具有最大的升力系数和升阻比,滑翔气动性能最优;当雷诺数为1500,攻角为10°时,褶皱位于尾缘的翼型时均升力系数分别比位于前缘和中部的翼型提高了58%和82%,升阻比分别提高了49%和33%;这是由于尾缘褶皱中的涡起到了延缓前缘涡脱落的作用,使前缘涡更为集中,更贴近壁面。   相似文献   

2.
平均攻角和振幅对振荡翼型气动特性的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
李绍斌  董贺峰  宋西镇 《推进技术》2015,36(9):1288-1294
采用一种基于k-ωSST模型和γ-θ转捩模型的雷诺平均N-S方程数值方法,对雷诺数Re=1.35×105下的NACA0012振荡翼型和静态翼型非定常流场和升力特性进行模拟,在缩减频率K=0.1的条件下研究了翼型振荡运动中平均攻角和振幅对平均升力系数的影响,并与静态翼型的升力特性及实验结果进行了对比。结果表明:当平均攻角小于临界攻角时,翼型的振荡运动会降低平均升力系数,当平均攻角大于临界攻角同时最小攻角小于临界攻角时,翼型的振荡可以提高平均升力系数。在平均攻角为12°~17°时,翼型振幅为6°左右时可获得最大平均升力系数,与静态翼型相比,平均升力系数可提高30%~45.7%。当振荡过程中最小攻角对应静态翼型轻失速攻角时,翼型上仰阶段前缘涡的产生和集中涡的稳定附着是平均升力系数大幅度阶跃式提升的原因,静态翼型与振荡翼型的组合可提高升力并拓宽攻角范围。  相似文献   

3.
采用表面测压技术,测量了低雷诺数下(Re=6.0×104、1.0×105、2.0×105)S1223翼型的表面压力分布,通过时均化处理及瞬态处理方法,分别获得了翼型稳态和瞬态压力系数、升力系数,分析了流场结构随雷诺数及攻角的变化规律,研究了雷诺数及攻角对翼型升力的影响机理.结果表明,从时均升力系数随攻角的变化规律来看,S1223翼型在低雷诺数下存在"静态滞回"效应.攻角由负逐渐增大至0°时,下翼面由完全分离转变为出现层流分离泡,随后分离泡逐渐减小直至消失,导致升力系数斜率呈现随攻角逐渐增大的非线性现象.当攻角超过临界攻角后,不同雷诺数下翼型流场结构随攻角的变化规律存在本质不同,Re=6.0×104和1.0×105时,翼型周围流场迅速发生大范围流动分离,升力系数迅速减小;而Re=2.0×105时,上翼面周期性生成短泡,引发低频振荡现象,升力系数呈现准周期性变化,α=16°时上翼面时均流场呈现40%弦长的长泡结构.  相似文献   

4.
结冰对翼型流场影响的研究   总被引:1,自引:0,他引:1  
本文以NACA23012翼型为研究对象,采用CFD软件模拟了结冰对翼型流场的影响。结果表明:结冰对翼型的气动性能有着明显的影响,尤其是在大攻角时,升力系数显著下降,而阻力系数则明显增加;对于光滑翼型和结冰翼型.计算值与试验值在‘定攻角范围内吻合良好:马赫数对两种翼型的升力系数和阻力系数随攻角的变化影响均比较小,雷诺数也一样。  相似文献   

5.
以二维刚性约束条件下的微型扑翼飞行器模型为研究对象,在动网格技术基础上,应用非定常数值分析手段对比分析了单翼/纵列翼布局的气动性能,深入研究了纵列翼缩减频率、扑翼—尾翼无量纲水平间距、来流攻角对其气动性能的影响.结果表明:①纵列翼尾翼对扑翼产生正效应干扰,相对于单翼布局,扑翼—尾翼无量纲水平间距为0.5倍翼型弦长时的纵列翼布局的推力系数和推进效率分别增加28.7%和5.7%;②缩减频率是影响推力的关键参数,随着缩减频率的增加,脱落涡的强度增加,推力系数增大.对于单翼、纵列翼两种布局模式,当缩减频率在1.0附近时推进效率达到最优;③对于纵列翼布局,在扑翼—尾翼无量纲水平间距为1.1倍翼型弦长时推进效率达到峰值;④在0°~20°来流攻角变化范围内,随着来流攻角的增加,升力系数增加,推力系数减小,当来流攻角大于9°时,两种布局的推力均为负值.   相似文献   

6.
协同射流技术作为一种新型主动流动控制技术,是突破旋翼翼型高增升减阻设计的最有潜力的发展方向之一。以 OA312 旋翼翼型作为基准翼型,研制微型涵道风扇组为驱动的旋翼翼型 CFJ 风洞测力模型,开展基于前缘高负压零质量内循环协同射流原理的旋翼翼型高增升减阻低速风洞试验,研究吹气口大小、吸气口大小和上翼面下沉量等基础参数对增升减阻的影响规律,探讨 CFJ 旋翼翼型关键参数最佳取值。结果表明:与OA312 基准翼型相比,小攻角状态时,CFJ 旋翼翼型可显著降低阻力系数,甚至出现“负阻力”现象,实现了零升俯仰力矩基本不变;大攻角状态时,CFJ 旋翼翼型可显著提升最大升力系数和失速迎角,其中,最大升力系数可提升约 67.5%,失速迎角推迟了近 14.8°。  相似文献   

7.
 基于大涡模拟(LES)和边界元方法对轴流压气机叶栅湍流流场以及流场诱导的噪声进行计算,在不同叶栅安装角下研究来流攻角和来流雷诺数对叶栅气动噪声产生、辐射的影响。研究表明:来流雷诺数不变时,同一安装角下,随着来流攻角从-5°~20°变化,叶栅监测曲线上的声压级先减小后增大,在0°来流攻角下声压级达到最小。安装角为45°时,外场总声压级随来流攻角的分布与30°安装角变化趋势相近。但安装角为60°时,总声压级的变化则明显变缓。在0°来流攻角下,总声压级比安装角为30°和45°时增加了近6 dB,但在其他正来流攻角下,变化并不明显。叶栅的最小声压值出现在弦线方向附近,安装角改变时,最小声压级出现的位置也不同。安装角不变,随着来流雷诺数的增大,叶栅表面的分离减小,损失降低。但叶栅表面的压力脉动随着来流雷诺数的增大而增大,使外场辐射噪声增加。  相似文献   

8.
分布式动力系统尾缘射流与边界层抽吸的数值分析   总被引:2,自引:2,他引:0  
为研究带有边界层抽吸的分布式动力系统尾缘射流对机身气动性能及推进效率的影响,将机身简化为二维翼型,并加入尾缘射流及边界层抽吸的作用,利用数值模拟的手段来研究来流攻角、射流偏转角、边界层抽吸对推进效率及气动性能的影响,为分布式动力系统的设计与应用提供初步的建议.结果表明在中、小来流攻角(2°及0.6°)的情况下尾缘射流及边界层抽吸能够提高升阻比,推进效率可超过80%;而在大来流攻角(4°)情况下射流偏转角增大使翼型的阻力大幅上升,对气动性能和推进效率产生极为不利的影响.   相似文献   

9.
使用标准k-ω模型及与色散模型相耦合的k-ω模型分别计算了NACA0012翼型和NACA 4412翼型的低速绕流问题.NACA 0012翼型计算了其来流雷诺数为2.88×106,攻角从0°到15°范围内的流动结构、翼型表面压力分布和升力、阻力特性;NACA 4412翼型计算了临界雷诺数为1.52×106,攻角为13.87°时的流动分离和翼型表面压力系数 ,并与实验数据进行对比.结果表明:在同等条件下,使用与色散模型相耦合的k-ω模型计算得到的NACA 0012翼型的升力和阻力系数比标准k-ω模型提高精度约5%,NACA 4412翼型的表面压力系数精度提高了约3%,进一步验证了其可信性,可将其进一步应用到低速飞行器的气动计算中.   相似文献   

10.
本文直接从N-S方程出发,利用LU-ADI格式和Baldwin-Lomax代数湍流模型研究了粘性流绕俯仰振动翼型的流动。数值实验表明,本文的数值结果同实验吻合较好。通过数值模拟手段研究了振动对流场中激波和分离这两大主要特征的影响,结果发现;(1)激波滞后于攻角的变化,如当NACA0012翼型在负攻角状态下上翼面存在激波而下翼面无激波。(2)由于翼型的振动,分离被减轻升力相对提高。(3)随翼型攻角和振幅的变化,翼型振动的升力回线走向可不同。  相似文献   

11.
褶皱结构是否能对蜻蜓后翅气动性能产生正面的影响,对蜻蜓后翅气动性能的影响是否与雷诺数(Re)相关。建立接近真实蜻蜓后翅的三维蜻蜓后翅褶皱模型和拥有同样外形的三维平板模型,利用计算流体力学方法分别计算两个模型在不同Re、不同攻角(α)下滑翔飞行时的气动特性。结果表明:褶皱结构的存在会明显提高蜻蜓后翅的升力,但是同时也会增大其阻力;不同Re情况下,褶皱结构对蜻蜓后翅气动性能的影响不同,当Re=1 000,α=0°~25°时,蜻蜓后翅的气动效能始终略优于三维平板;褶皱结构对蜻蜓后翅气动特性的影响与α也相关,α较大时蜻蜓后翅的气动效能略优于三维平板。  相似文献   

12.
三角翼布局因其优良的气动特性在军用飞机和无人机上获得了广泛应用.为了研究钝前缘三角翼无人机的气动特性,首先采用求解雷诺平均N-S方程的方法对NASA钝前缘三角翼标模进行对比计算,以验证计算方法的可靠度;然后对无人机四个升降舵偏角的气动力和流场特性进行分析研究.结果表明:三角翼无人机在升力系数较小时具有较高的升阻比,当迎角小于1 5°时,钝前缘三角翼前缘气流附体、吸力较高,翼面的横向流动不明显,使飞机的升阻比提高;当迎角大于15°后,涡流特征起主导作用,使得飞机在直到40°迎角范围内没有出现大面积气流分离,具有良好的俯仰稳定性,升降舵效率较高.钝前缘三角翼气动布局在翼展受限、翼载较小的条件下具有一定的气动特性优势.  相似文献   

13.
基于Favre过滤的大涡模拟方法,对雷诺数Re=10^4,迎角α=6°下的NACA0012翼型上表面吹吸气射流进行了数值模拟,从翼型周围流场流线图、速度场云图、上下表面压力系数曲线以及上表面边界层位移厚度等多角度地分析了射流位置以及速度变化对翼型气动性能的影响。结果表明:射流位置对翼型气动性能影响较大,且吸气射流要明显优于吹气射流。对于吸气射流,前缘吸气要明显优于中后缘吸气,可有效增升减阻,并减小翼型尾部流动分离,抑制翼型气动参数扰动,其最佳吸气位置随着速度的增大逐渐向下游移动;而吹气射流对翼型气动系数的作用效果较差,但中后缘的吹气射流可减小飞行过程中的气动扰动量,且吹气越大,效果越明显。  相似文献   

14.
采用计算流体力学方法对降雨条件下翼型的气动特性进行了研究.通过求解定常可压的Navier-Stokes方程来计算流场,采用拉格朗日法对流场中的雨滴轨迹进行了模拟跟踪,得到了翼型表面的雨滴收集率;建立了水膜层数学模型,并假定水膜层沿着翼型表面的法向方向增长,预测了降雨引起的翼型外形的变化,并得到了水膜层表面的粗糙度高度;采用k-ωSST(shear-stress transport)两方程湍流模型结合增强的壁面函数,研究了降雨对翼型气动特性的影响.结果表明,在低迎角范围内,降雨对翼型的升力系数和阻力系数影响很小;当达到失速迎角后,降雨会引起上翼面边界层气流的提前分离,造成翼型气动性能的严重损失.   相似文献   

15.
《中国航空学报》2022,35(9):194-207
The flapping motion has a great impact on the aerodynamic performance of flapping wings. In this paper, a surging motion is added to an airfoil performing pitching-plunging combined motion to figure out how it influences the lift performance and flow pattern of flapping airfoils. Firstly, the numerical methods are validated by a NACA0012 airfoil pitching case and a NACA0012 airfoil plunging case. Then, the E377m airfoil which has typical geometric characteristics of the bird-like airfoil is selected as the calculation model to study how phase differences φ1 between surging motion and plunging motion affect the aerodynamic performance of flapping airfoils. The results show that the airfoil with surging motion has comprehensively better lift performance and thrust performance than the airfoil without surging motion when 15°< φ1 < 90°. It is demonstrated that surging motion has a powerful ability to improve the aerodynamic performance of flapping airfoil by adjusting φ1. Finally, to further explore how flapping airfoil improves lift performance by considering surging motion, the flapping motions of E377m airfoil with the highest lift coefficient and lift efficiency are obtained through trajectory optimization. The surging motion is removed in the highest lift case and highest lift efficiency case respectively, and the mechanism that surging motion adjusts the aerodynamic force is analyzed in detail by comparing the vortex structure and kinematic parameters. The results of this paper help reveal the aerodynamic mechanism of bird flight and guide the design of Flapping wing Micro Air Vehicles (FMAV).  相似文献   

16.
The transit time difference of fluid particles moving along the upper and lower surfaces of a lift-producing airfoil is studied here both theoretically and numerically. We show that, under thin airfoil assumption and for potential flow, the transit time difference is equal to the circulation divided by the square of the inflow velocity and the lift coefficient is equal to half of the number of chords travelled by the airfoil during the transit time difference. An analysis of transit time differe...  相似文献   

17.
通过求解二维可压Navier-Stokes方程,研究了NACA0012翼型加装微型后缘增升装置(mini-TED)后的跨声速流场特性,与Gurney flap (GF)对比分析了几何参数对mini-TED后方涡系及翼型气动特性的影响.将mini-TED的几何细节参数定义为弦向长度和有效高度,两者方向正交.在相同迎角下仅改变mini-TED的弦向长度,后缘涡系结构虽发生变化,但翼型气动力几乎没有影响;反之仅改变有效高度则后缘涡系和翼型气动力系数同时发生明显改变,且与同等高度下的GF气动系数相近.结果表明:有效高度是影响翼型气动特性的决定因素.有效高度改变了mini-TED后涡系的发生范围,而相对于整个翼型绕流,后缘涡系的大小是影响翼型流场最重要的因素,而涡系的微观结构和形态的改变影响相对很小.加装mini-TED后上表面激波位置后移、下表面激波强度削弱,从而翼型表面压力分布特性发生了改变.随有效高度增大,mini-TED诱导的涡系发生区域随之增大,引流作用增强,翼型升力系数、阻力系数和低头力矩系数提高,同时相同迎角下翼型的升阻比明显提高.  相似文献   

18.
采用动网格法对NACA4421翼型以15°攻角启动过程进行了数值模拟。计算给出了启动过程中尾缘启动涡的生成、脱落与绕翼型环流充分发展的瞬态流场及气动力特性变化曲线,并对升力数据进行了拟合。计算结果表明,启动瞬间,上翼面最大负压和上下翼面最大压强差均出现在翼型后半段,随后逐渐向前缘移动,最终稳定在前缘点附近。下翼面最大正压点和上下翼面压差随弦向位置的最大变化率则始终维持在前缘点附近。加速过程中,整个翼型受到的升力近似于瞬时速度的二次幂指数的规律变化。加速段结束后,翼型转入匀速运动的瞬间出现升力小幅下降的现象,之后逐渐回升至稳定升力。  相似文献   

19.
翼型动态失速等离子体流动控制试验   总被引:1,自引:1,他引:0  
李国强  常智强  张鑫  阳鹏宇  陈立 《航空学报》2018,39(8):122111-122111
针对动态失速引起的翼型气动性能恶化的问题,利用小型化的激励电源和介质阻挡放电等离子体激励器,借助动态压力测量和外触发式粒子图像测速(PIV)等手段开展了翼型动态失速等离子体流动控制试验研究。结果表明,等离子体气动激励能够有效控制翼型动态失速,改善平均气动力,提高翼型气动效率,减小气动力随迎角变化的迟滞区域。等离子体诱导出前缘附近的贴体翼面涡,促进分离流再附;增加了上翼面0.2~0.4弦长区域的吸力,减小了升力系数功率谱密度(PSD)分布的二、三、四阶能量幅值,在研究工况下实现了平均升力系数增加7.1%、失速迎角推迟1.3°和迟滞区域减小4.5%的明显控制效果;4°~9°迎角段,等离子体使得翼型平均阻力系数减小40%。此外,振荡频率增加使翼型绕流的非定常性增强,较高雷诺数下的翼型动态分离涡更加难以被抑制,均需要增加等离子体激励强度才能达到较好的控制效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号