首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 312 毫秒
1.
本文用作者在文[1]中引入的特征速度U*作为磁流体力学激波的基本强度参数,解析地讨论了磁流体力学激波的种类和特性;详细地讨论了磁场强度跃变比h随特征马赫数平方M*2=U*2/C12的函数的变化;给出介质密度、压力、法向和切向速度[ux]/C1和[uy]/C1跃变比的结果,最后,讨论了包括励磁和消磁激波在内的垂直和平行磁流体力学激波的极限情形。   相似文献   

2.
本文叙述确定总电子含量积分常数(Ωc)的一个方法。它是根据同步卫星信号相对法拉第旋转角(ΩR)随昼夜f02F2值的变化,运用最小二乘法计算Ωc对于f02F2的回归直线。此线的斜率正比于电离层等效板厚τ,直线与纵轴的交点给出Ωc。   相似文献   

3.
本文用极盖边界上电离层驱动电位φ0随时间变化的不同模式计算了场向电流J2及电离层对流电场E的演化过程。计算表明,当φ0(t)先升后降有极大值时,J2(t)和E(t)也表现出类似的趋势。但它们的极值滞后于φ0max出现的时刻,即在一段时间内,φ0虽已开始下降,J2及高纬E却继续增大。一般说,E先于J2达到极值,但相差甚小。φ0变化形式不同时,滞后时间亦不同。当φ0陡升缓降时,E、J2的极值相对于φ0max的时延可超过一小时。这与持续时间较长的磁暴期间所观测到的电离层场强响应时延量级是一致的。时延大小还受电离层电导率的制约。低纬电离层场强的响应与高纬不同,其升降趋势与φ0同步。   相似文献   

4.
空间飞船Helios 1和2的观测表明, 由0.3AU, 至1AU, 质子的磁矩Tp/B随日心距离增加而增加, 而纵向绝热不变量Tp∥B2/NP2则随日心距离增加而下降。这说明质子在垂直于行星际磁场方向上受到加热, 而在平行磁场的方向上受到冷却。以往没有理论能满意地解释上述现象, 本文在Alfvén脉动串级理论的基础上利用回旋波的准线性理论分析研究了串级能量转化为太阳风质子热能的机制, 解释了上述观测事实。   相似文献   

5.
我国电离层基本参量与国际参考模式的比较   总被引:3,自引:1,他引:2  
本文利用我国满洲里、北京、武昌、重庆和广州等台站电离层观测记录,对各层临界频率的实测值(月中值)与IRI-86的计算值进行了分析比较.|发现两者存在着显著而系统的偏离.E层和F1层偏离较小F2层偏离较大,其相对值有时超过60%.总的来说,f0F2的相对偏离:夜间大,白天小冬季大,夏季小太阳活动低年大,高年小随着纬度降低偏离增大模式值普遍大于实测值.   相似文献   

6.
本文求出木卫、土卫、天卫系中卫星离行星的距离αn的一种新经验公式:αn=B1·Bn,其中B1、B对各卫星系是常数.由此计算结果与观测值偏差一般小于10%.我们认为,卫星是在行星周围的气体-星子盘中,通过小星子聚集形成的,盘中主要成分是气体,气体阻尼效应在星子聚集形成卫星过程中起重要作用.分析表明,盘中的一种径向小扰动可以导致引力不稳定性而形成密度增加的气体环系.在这种环系中小星子聚集形成卫星.环分布形式导致距离规律.   相似文献   

7.
本文利用MHD激波跳跃条件的精确解,具体讨论了行星际背景太阳风状态参数Alfvén马赫数M1、等离子体β1参数和磁场角θ1的变化对地球磁鞘区中磁场起伏特性及其分布的影响.主要结果是:马赫数M1的变化主要控制磁场起伏特性:放大倍数、相对起伏和各向异性程度的水准高低.磁场角θ1的变化控制磁场起伏的空间分布特性.等离子体β1参数的变化,不引起磁场起伏特性的明显变化(对于实际经常发生的情况M1 8而言).M1、θ1是强控制参数,而β1是弱控制参数;磁鞘区磁场起伏对太阳风状态参数的变化响应呈现明显的晨-昏不对称性(行星际磁场位于黄道面时),响应主要发生在晨侧.晨侧的磁场起伏(或湍动)相当活跃,而昏侧相当稳定;磁鞘中不同地点磁场起伏特性对太阳风状态参数M1、β1的变化响应有大致相同的形式,而对其磁场角度θ1的变化却有迥然不同的形式.   相似文献   

8.
冲击波在变密度、运动介质中的传播   总被引:5,自引:2,他引:3  
本文得到了点源爆炸波在变密度、运动介质中传播的分析解(ω=2,γ=5/3),讨论了耀斑引起的击波在太阳风中传播的一些特性。发现1AU附近区域恰是击波各种重要效应的过渡区;击波减速等效指数i(D=K(uo,Es)R-i(uo,Es,R))是介质运动速度uo.击波能量Es,和击波传播距离R的函数,通常是小于1/2的,不是自型理论预言的那样简单;太阳风的对流效应使击波可以传播到10-20AU以远,与飞船(先躯者10、11号)新近的观测相吻合。   相似文献   

9.
用Hα色球、射电运动频谱、射电日像和米波、分米波、厘米波段上的七个单频射电总流量的观测资料及地磁记录,对1982年1月22日太阳西边缘的物质抛射事件做了综合分析.用流量变化率曲线讨论了爆发特点.在绝热假设下推得抛射物质团在1.16R附近的内部磁场为12G,总电子数为1038,总能量为7×1029erg.事件的总抛射物质~1014-1015g,总能量~2×1030erg.   相似文献   

10.
本文考查了120°E附近的五个中低纬电离层观测站在极光强扰动下的f0F2行为。共考查了从1966—1970年五年资料中AE>1400日及1969年中AE>1000日的f0F2行为。研究得出了与印度站链有所不同特征——在极光强扰动下120°E中低纬五站之f0F2均有不同程度的减小,而不是增加,并且在中纬较高纬度的满州里站之f0F2减小比北京站要显著。扰日后效在中、低纬区不同,低纬之武昌、广州和海南岛三站均呈现扰动过后次日上午段的f0F2增加,中纬较高纬度的满洲里站仍呈现f0F2减少。我们认为这是由于低纬区主要受赤道喷泉效应改变的影响,而中纬及亚极光纬区主要受极光强扰时产生的环球电场的直接作用结果,它反映了纬向电场耦合传递的影响。当然极光扰动时对中性大气层的能量输入亦对观测到的现象有贡献。   相似文献   

11.
Fluctuations of cosmic rays and interplanetary magnetic field upstream of interplanetary shocks are studied using data of ground-based polar neutron monitors as well as measurements of energetic particles and solar wind plasma parameters aboard the ACE spacecraft. It is shown that coherent cosmic ray fluctuations in the energy range from 10 keV to 1 GeV are often observed at the Earth’s orbit before the arrival of interplanetary shocks. This corresponds to an increase of solar wind turbulence level by more than the order of magnitude upstream of the shock. We suggest a scenario where the cosmic ray fluctuation spectrum is modulated by fast magnetosonic waves generated by flux of low-energy cosmic rays which are reflected and/or accelerated by an interplanetary shock.  相似文献   

12.
简单强磁云的结构特征   总被引:1,自引:1,他引:0  
本文讨论了1980年12月19日和3月19日两次无大型共转流相联系的行星际简单强磁云事件的磁流体动力学结构特征。此两磁云均以高温、高密度的湍流结构为先导,接着是低温、低密度,磁场很强且倾角单调旋转的磁云本体,后随另一密度稍高的结构。磁云本体内Alfvén波速及磁压对动能密度和热压的比值异常地增高,有利于磁云后的扰动迅速穿越磁云向前传播并向前边界集结。磁云边界上的巨大磁压梯度力及MHD波动在高密度结构内的耗散有可能对磁云前的太阳风进行加速和加热,形成双锯齿流速图象。简单磁云的结构很象典型的日冕质量抛射事件。此外,还简要地分析了磁云引起的地磁暴和宇宙线下降。   相似文献   

13.
Many interplanetary shock waves have a fast mode MHD wave Mach number between one and two and the ambient solar wind plasma and magnetic field are known to fluctuate. Therefore a weak, fast, MHD interplanetary shock wave propagating into a fluctuating solar wind region or into a solar wind stream will be expected to vary its strength.It is possible that an interplanetary shock wave, upon entering such a region will weaken its strength and degenerate into a fast-mode MHD wave. It is even possible that the shock may dissipate and disappear.A model for the propagation of a solar flare - or CME (Coronal Mass Ejections) - associated interplanetary shock wave is given. A physical mechanism is described to calculate the probability that a weak shock which enters a turbulent solar wind region will degenerate into a MHD wave. That is, the shock would disappear as an entropy-generate entity. This model also suggests that most interplanetary shock waves cannot propagate continuously with a smooth shock surface. It is suggested that the surface of an interplanetary shock will be highly distorted and that parts of the shock surface can degenerate into MHD waves or even disappear during its global propagation through interplanetary space. A few observations to support this model will be briefly described.Finally, this model of shock propagation also applies to corotating shocks. As corotating shocks propagate into fluctuating ambient solar wind regions, shocks may degenerate into waves or disappear.  相似文献   

14.
It is clear that the primary energy source for magnetospheric processes is the solar wind, but the process of energy transfer from the solar wind into the magnetosphere, or rather, to convecting magnetospheric plasma, appears to be rather complicated. Bow shock is a powerful transformer of the solar wind kinetic energy into the gas dynamic and electromagnetic energy. A jump of the magnetic field tangential component at front crossing means that the front carries an electric current. The solar wind kinetic energy partly transforms to gas kinetic and electromagnetic energy during its passage through the bow shock front. The transition layer (magnetosheath) can use part of this energy for accelerating of plasma, but can conversely spend part its kinetic energy on the electric power generation, which afterwards may be used by the magnetosphere. Thereby, transition layer can be both consumer (sink) and generator (source) of electric power depending upon special conditions. The direction of the current behind the bow shock front depends on the sign of the IMF Bz-component. It is this electric current which sets convection of plasma in motion.  相似文献   

15.
一类TVD型组合差分方法及其在磁流体数值计算中的应用   总被引:4,自引:2,他引:4  
根据太阳风数值模拟的特点,考虑到算法的质量(收敛速度、稳定性、精度等),结合磁流体数值计算的特性,对三维球坐标磁流体动力学(MHD)方程组中的流体部分采用一种修正Lax-Friedrichs差分法而对磁场部分采用MacComack格式,发展了一类快捷的具有TVD特性的组合数值新方法,作为格式的检验,在一维情况下,将其与PPM格式进行了比较,对一维快慢磁流体激波问题得到了与PPM格式精度相同的结果,然后将其诮到定态太阳风的数值模拟上,在不同等离子体β情形下,可得到理想的太阳风定态结构,为今后将此数值模式应用到具有复杂磁场位型或三维直实太阳风暴的数值模拟研究奠定了基础。  相似文献   

16.
A simple shock model for the acceleration of energetic particles in corotating interaction regions (CIR) in the solar wind is presented. Particles are accelerated at the forward and reverse shocks which bound the CIR by being compressed between the shock fronts and magnetic irregularities upstream from the shocks, or by being compressed between upstream irregularities and those downstream from the shocks. Particles also suffer adiabatic deceleration in the expanding solar wind, an effect not included in previous shock models for acceleration in CIR's. The model is able to account for the observed exponential spectra at earth, the observed behavior of the spectra with radial distance, the observed radial gradients in the intensity, and the observed differences in the intensity and spectra at the forward and reverse shocks.  相似文献   

17.
Using Lunar Prospector data, we review the magnetic field and electron signatures of solar wind interaction with lunar crustal magnetic sources. Magnetic field amplifications, too large to represent direct measurements of crustal fields, appear in the solar wind over strong crustal sources, with the chance of observing these amplifications depending on upstream solar wind parameters. We often observe increases in low-energy (?100 eV) electron energy fluxes simultaneously with large magnetic field amplifications, consistent with an increase in plasma density across a shock surface. We also often observe low frequency wave activity in the magnetic field data (both broadband turbulence and monochromatic waves), often associated with electron energization, sometimes up to keV energies. Electron energization appears to be correlated more closely with wave activity than with magnetic amplifications. Detailed studies of the interaction region will be necessary in order to understand the physics of the Moon–solar wind interaction. At present, the Moon represents the only natural laboratory available to us to study solar wind interaction with small-scale crustal magnetic fields, though simulation results and theoretical work can also help us understand the physical processes at work.  相似文献   

18.
根据太阳宇宙线传播方程的量纲分析解, 讨论了传播对宇宙线事件峰值谱的影响, 着重指出对其进行传播改正的重要性。太阳风对流是低能谱变坦的可能原因之一, 在一定条件下, 幂律型发射谱可以变成指数型观测谱, 动能幂律谱也可以变成刚度幂律谱。能谱的幂指数随源耀斑的磁方位角而增加, 分布有明显的东西不对称性。进一步对第20周的相对论性太阳质子事件进行传播改正, 求出发射谱, 其中有些可表达成统一指数的幂律谱, 有些仍有低能段趋坦现象。   相似文献   

19.
午后极光强度与太阳风-磁层耦合函数的相关   总被引:1,自引:0,他引:1  
利用1997年和1998年南极中山站多通道扫描光度计的地面观测数据和Wind卫星在弓激波上游对行星际磁场和太阳风参数的观测数据,对午后高纬极光强度与太阳风-磁层耦合函数之间的相关性进行定量研究.研究表明,午后630.0nm极光强度与太阳风-磁层耦合函数间有很好的相关,而557.7nm的相关性差一些;在考察的所有耦合函数中,午后极光受太阳风电场和能量的影响更直接;同时,行星际磁场的时钟角对午后极光也有很强的控制作用.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号