首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Satellite data on the position of maximum L m of the belt of relativistic electrons during strong storms, obtained at low altitudes (∼500 km) and at high altitudes (near the geomagnetic equator plane), are compared (L is the McIlwain parameter). Both at low and high altitudes the maximum of the storm belt of relativistic electrons is formed on the outer edge of the ring current. It is shown that the geomagnetic field can substantially deviate from dipole configuration not only at the geomagnetic trap periphery, but at its core as well (at L ∼ 2.5–3.5), and these deviations are nonlinear. Simultaneous measurements of the fluxes of relativistic electrons at low and high altitudes can serve for estimation of the real shape of magnetic field lines at L < 4 during geomagnetic disturbances.  相似文献   

2.
Some results of studying the electrons with energies of tens to hundreds of keV at the low and near- equatorial geomagnetic latitudes by using the instruments Sprut-V and Ryabina-2 onboard the Mirspace station in 1991 are presented. It is found that at L< 1.2 the enhanced electron fluxes are sporadically detected, being localized within three longitudinal intervals, 180° W–0°–15° E, 90°– 120° E, and 160° E–180°–135° W. The most intense electron fluxes are observed at the lower edge of the near-equatorial boundary of the inner radiation belt on longitudes of the South Atlantic Anomaly between 14 and 20 h MLT. The occurrence of electron bursts does not depend on the geomagnetic disturbance level. A hardening of the electron spectra is observed near the geomagnetic equator. At L< 1.1, the more energetic particles are located closer to the geomagnetic equator. The results are compared with the data on the low-frequency waves and fields at low and near-equatorial latitudes obtained by the Ariel-4and San Marco Dsatellites, as well as by the spacecraft and ground-based observations of the thunderstorm global distribution. The thunderstorms are considered as a possible source of electron production near the geomagnetic equator.  相似文献   

3.
Variations of particle fluxes during a moderate magnetic storm on August 30–31, 2004 are analyzed in this paper using measurements on low-orbit polar satellites CORONAS-F and SERVIS-1. The Earth’s radiation belts were filled at this time by enhanced flux of energetic particles accelerated a month ago during magnetic storms on July 23–27. The analysis has shown that even during a moderate magnetic storm a set of several adiabatic and non-adiabatic processes is observed, which leads to acceleration or release of particles and acts selectively depending on the energy range and charge of particles.  相似文献   

4.
The large and sharp changes of solar wind dynamic pressure, found from the INTERBALL-1 satellite and WIND spacecraft data, are compared with simultaneous magnetic field disturbances in the magnetosphere measured by geosynchronous GOES-8, GOES-9, and GOES-10 satellites. For this purpose, about 200 events in the solar wind, associated with sharp changes of the dynamic pressure, were selected from the INTERBALL-1 satellite data obtained during 1996–1999. The large and sharp changes of the solar wind dynamic pressure were shown to result in rapid variations of the magnetic field strength in the outer magnetosphere, the increase (drop) of the solar wind dynamic pressure always lead to an increase (drop) of the geosynchronous magnetic field magnitude. The value of the geomagnetic field variation strongly depends on the local time of the observation point, reaching a maximum value near the noon meridian. It is shown that the direction of the B z component of the interplanetary magnetic field has virtually no effect on the geomagnetic field variation because of a sharp jump of pressure. The time shift between an event in the solar wind and its response in the magnetosphere at a geosynchronous orbit essentially depends on the inclination of the front of a solar wind disturbance to the Sun-Earth line.  相似文献   

5.
The results of studying the interaction of two types of the solar wind (magnetic clouds and solar wind of extremely low density) with the Earth's magnetosphere are discussed. This study is based of the INTERBALL space project measurements and on the other ground-based and space observations. For moderate variations of the solar wind and interplanetary magnetic field (IMF) parameters, the response of the magnetosphere is similar to its response to similar changes in the absence of magnetic clouds and depends on a previous history of IMF variations. Extremely large density variations on the interplanetary shocks, and on leading and trailing edges of the clouds result in a strong deformation of the magnetosphere, in large-scale motion of the geomagnetic tail, and in the development of magnetic substorms and storms. The important consequences of these processes are: (1) the observation of regions of the magnetosphere and its boundaries at great distances from the average location; (2) density and temperature variations in the outer regions of the magnetosphere; (3) multiple crossings of geomagnetic tail boundaries by a satellite; and (4) bursty fluxes of electrons and ions in the magnetotail, auroral region, and the polar cap. Several polar activations and substorms can develop during a single magnetic cloud arrival; a greater number of these events are accompanied, as a rule, by the development of a stronger magnetic storm. A gradual, but very strong, decrease of the solar wind density on May 10–12, 1999, did not cause noticeable change of geomagnetic indices, though it resulted in considerable expansion of the magnetosphere.  相似文献   

6.
We have made a generalization of experimental data on the fluxes of trapped protons that were detected by various instruments on three low-orbit satellites (NOAA-17, Universitetskii-Tatiana, and CORONAS-F) during April of 2005. Based on these data, a new quantitative model is suggested to describe the fluxes of trapped protons. It allows one, using analytical expressions, to predict the fluxes of protons with energy from 30 keV to 140 MeV under quiet geomagnetic conditions in the period close to the solar activity minimum at drift shells L = 1.14–1.4. The suggested model establishes differential directional fluxes of protons as a function of pitchangle on the geomagnetic equator and takes into account the anisotropy of trapped particles on the lower boundary of the Earth’s radiation belt.  相似文献   

7.
Bezrukikh  V. V.  Kotova  G. A.  Lezhen  L. A.  Lemaire  J.  Pierrard  V.  Venediktov  Yu. I. 《Cosmic Research》2003,41(4):392-402
We present the results of temperature and density measurement of plasmaspheric protons under quiet and disturbed conditions in the night and dayside sectors of the plasmasphere obtained with the Auroral Probe/Alpha-3 instrument during September 1996 and January 1997. According to the experimental data, the proton temperature in the night sector of the plasmasphere depends on the level of geomagnetic disturbance: it is found that at night hours the values of temperatures inside the plasmasphere at 2.4 < L < 3.5 decreased considerably after the commencement of a geomagnetic storm. The temperature decrease, as a rule, was accompanied by the formation of a flat plateau on the density distribution n(L) at 2.4 < L < 3.5. The above experimental facts (decreasing proton temperature and formation of a flat part on the n(L) distribution) allow us to conclude that the decrease in the proton temperature in the night sector of the plasmasphere connected with magnetic disturbances is caused by the filling of field tubes (depleted after the commencement of the storm) with colder ionospheric plasma. The proton temperature in the dayside sector of the plasmasphere virtually does not depend on the level of the geomagnetic disturbance.  相似文献   

8.
Gdalevich  G. L.  Izhovkina  N. I.  Ozerov  V. D. 《Cosmic Research》2003,41(6):561-566
The observational data on the plasma density and electron component temperature in the region of the geomagnetic equator in the ionosphere F layer are presented. The measurements have been conducted by scientific equipment onboard the Kosmos 900 satellite (on August 7, 1979). A plasma cavern was observed in this region. It is shown that the formation of the cavern may be related to the attenuation of the electrostatic plasma instability and plasma vortices in the upper ionosphere at the geomagnetic equator.  相似文献   

9.
10.
Using a single event as an example, we make an analysis of the time development of a substorm and estimate its influence on the motion of the low-latitude boundary of the magnetosphere. To this end, we compare the data on plasma and magnetic field obtained by five spacecraft (WIND, INTERBALL-1, GEOTAIL, GOES-8, and GOES-9) with measurements made by ground-based stations. It is shown that the release of energy of the geomagnetic tail begins from a disruption of the current sheet near the Earth. The high-speed plasma stream that transfers a magnetic flux to the Earth and can have an effect on the magnetic field configuration near the Earth is detected later. Almost simultaneously with a substorm onset a series of magnetopause crossings has been detected by the INTERBALL-1 satellite on the evening side of the low-latitude magnetosphere. In this paper we consider some of possible causes of this motion of the magnetosphere boundary, including variations of parameters of the solar wind, Kelvin-Helmholtz instability, and substorm processes. It is shown that fast motions of the magnetopause are detected almost simultaneously with field variations in the near magnetotail of the Earth and geomagnetic pulsations Pi2 on ground-based stations. A sufficiently high degree of correlation (K = 0.67) between the amplitude of Pi2 pulsations and the amplitude of magnetic field variations near the magnetopause is probably indicative of the connection of short-term motions of the magnetosphere boundary with the tail current disruption and the process of formation of a substorm current wedge.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 4, 2005, pp. 248–259.Original Russian Text Copyright © 2005 by Nikolaeva, Parkhomov, Borodkova, Klimov, Nozdrachev, Romanov, Yermolaev.  相似文献   

11.
We present the results of studying the magnetospheres’s response to sharp changes of the solar wind flow (pressure) based on observations of variations of the ions flux of the solar wind onboard the Inreball-1 satellite and of geomagnetic pulsations (the data of two mid-latitude observatories and one auroral observatory are used). It is demonstrated that, when changes of flow runs into the magnetosphere, in some cases short (duration ~ < 5 min) bursts of geomagnetic pulsations are excited in the frequency range Δf~ 0.2–5 Hz. The bursts of two types are observed: noise bursts without frequency changes and wide-band ones with changing frequency during the burst. A comparison is made of various properties of these bursts generated by pressure changes at constant velocity of the solar wind and by pressure changes on the fronts of interplanetary shock waves at different directions of the vertical component of the interplanetary magnetic field.  相似文献   

12.
The ground-based polarization jet measurements at the Yakutsk ionosphere station (L= 3.0) for the years 1989–1991 (110 events) are compared with variations of the AE-index and with parameters of the local magnetic activity. It is shown that polarization jet development in the near midnight sector can occur during a period of no longer than 10 min on the expansion phase of a substorm. The formation of the polarization jet is accompanied by a specific magnetic field variation corresponding in shape to a fast passage of the Harang Discontinuity above the station. Statistical data are given on ground level observations of the polarization jet, which are close to those measured from satellites. The mean delay (averaged over the full data bank) between the onset of a substorm with AE 500 nT and the moment of the polarization jet appearance at L= 3.0 is equal to 0.5 h near midnight and to 1.0 – 1.5 h in the evening sector. Estimations show that the duration of the polarization jet formation when energetic ions are injected into the Harang Discontinuity region above the ground station can last for about 10 min, and during this time the Harang Discontinuity can be shifted to the west. This is in qualitative agreement with the described observations.  相似文献   

13.
We present the results of a cross-correlation analysis made on the basis of Spearman’s rank correlation method. The quantities to correlate are daily values of the fluence of energetic electrons at a geosynchronous orbit, intensities of ground and interplanetary ultra-low-frequency (ULF) oscillations in the Pc5 range, and parameters of the solar wind. The period under analysis is the 23rd cycle of solar activity, 1996–2006. Daily (from 6 h to 18 h of LT) magnetic data at two diametrically opposite observatories of the Intermagnet network are taken as ground-based measurements. The fluxes of electrons with energies higher than 2 MeV were measured by the geosynchronous GOES satellites. The data of magnetometers and plasma instruments installed on ACE and WIND spacecraft were used for analysis of the solar wind parameters and of the oscillations of the interplanetary magnetic field (IMF). Some results elucidating the role played by interplanetary ULF waves in the processes of generation of magneospheric oscillations and acceleration of energetic electrons are obtained. Among them are (i) high and stable correlation of ground ULF oscillations with waves in the solar wind; (ii) closer link of mean daily amplitudes of both interplanetary and ground oscillations with ‘tomorrow’ values of the solar wind velocity than with current values; and (iii) correlation of the intensity of ULF waves in the solar wind, normalized to the IMF magnitude, with fluxes of relativistic electrons in the magnetosphere.  相似文献   

14.
In 1964, during flights of the ELECTRON satellites the narrow belts of energetic electrons (E e ≈ 6MeV) have been discovered in the Earth’s magnetosphere at L ≈ 2.75. The same structures approximately at the same magnetic shells were found in 2004 by the CORONAS-F and SERVIS-1 satellites. A comparison of the results of these experiments is presented. It is shown that the additional narrow belts of energetic electrons occur after intense magnetic storms (D st > 100 nT), in our cases, having a double-triple structure. The lifetime of these belts is a few months and their disappearance had a gradual character. The obtained results separated in time by 40 years suggest the constancy of the sources of particles of the Earth’s radiation belts and processes occurring in the magnetosphere, which ensures not only existence of the radiation belts, but also the recurrence of various exotic phenomena in the belts similar to the belt of energetic electrons at the inner magnetic shells.  相似文献   

15.
The relationship between proton aurora and geomagnetic pulsations Pc1, which are an indicator of development of ion-cyclotron instability in the equatorial magnetosphere, are studied on the basis of the observations of proton aurora from the IMAGE satellite, observations of particle fluxes onboard the low-orbiting NOAA satellites, and geomagnetic pulsation observations at the Lovozero observatory. A conclusion is drawn that the subauroral spots in the proton emission projected into the magnetosphere near the plasmapause are two-dimensional images at the ionospheric “screen” of the region of intense scattering of energetic protons into the loss cone at the development of an ion-cyclotron instability.  相似文献   

16.
Rothkaehl  H.  Stanisławska  I.  Blecki  J.  Zbyszynski  Z. 《Cosmic Research》2003,41(4):340-344
The polar cusp being a region of the free access of the solar wind into the inner magnetosphere is also the site of turbulent plasma flow. The cusp area at low altitudes acts like a focus of a variety type of instability and disturbances from different regions of the Earth. Daily f 0 F2 frequencies are discussed regarding the cusp position. The high time resolution wave measurements together with electron and ion energetic spectra measurements registered on the board the Freja satellite and Magion-3 and the electron density at the peak of f 0 F2 layers collected from ground-based ionosonde measurements were used to study the response of ionospheric plasma within the cusp–cleft region to the strong geomagnetic storm. In this paper we present the response of the ionospheric plasma to the disturbed conditions seen in the topside wave measurements and in the ionospheric characteristics maps obtained from the ground-based VI network. The need of the cusp feature model for radio communication purposes is advocated.  相似文献   

17.
Within the framework of the Space Weather program, 25-year data sets for solar X-ray observations, measurements of plasma and magnetic field parameters in the solar wind, and D st index variations are analyzed to reveal the factors that have had the greatest influence on the development of magnetospheric storms. The correlation between solar flares and magnetic storms practically does not exceed a level of correlation for random processes. In particular, no relation was found between the importance of solar flares and the minimum of the D st index for storms that could be connected with considered flares by their time delay. The coronal mass ejections (CME; data on these phenomena cover a small part of the interval) result in storms with D st < –60 nT only in half of the cases. The most geoeffective interplanetary phenomena are the magnetic clouds (MC), which many believe to be interplanetary manifestations of CMEs, and compressions in the region of interaction of slow and fast streams in the solar wind (the so-called Corotating Interaction Region, CIR). They correspond to about two-thirds of all observed magnetic storms. For storms with –100 < D st < –60 nT, the frequencies of storms from MC and CIR being approximately equal. For strong storms with D st < – 100 nT, the fraction of storms from MC is considerably higher. The problems of reliable prediction of geomagnetic disturbances from observations of the Sun and conditions in interplanetary space are discussed.  相似文献   

18.
During the period October 29–31, 2003, geosynchronous magnetopause crossings (GMC) have been identified based on the magnetic data of the GOES series spacecraft and plasma data of the LANL series spacecraft. It is shown that most of the time the size of the dayside magnetosphere was highly decreased under the effect of very high pressure associated with high velocities and densities of the solar wind plasma, as well as high negative values of the Bz component of the interplanetary magnetic field (IMF). For tens of hours the subsolar magnetopause was deep inside the geosynchronous orbit. During the main phase and at the maximum of the strong geomagnetic storms that occurred in the period under consideration, the dayside magnetosphere was characterized by a strong dawn-dusk asymmetry, so that its size in the postnoon sector considerably exceeded the size in the pre-noon sector. The geomagnetic disturbances in the morning on October 30 and 31, 2003 were accompanied by global magnetospheric pulsations with periods of 5–10 min and high amplitude (up to 0.8 RE).Translated from Kosmicheskie Issledovaniya, Vol. 42, No. 6, 2004, pp. 574–584.Original Russian Text Copyright © 2004 by Dmitriev, Suvorova.  相似文献   

19.
Using the new technology of global GPS detection of ionospheric disturbances (GLOBDET), it is found that a sharp increase of the time derivative of the magnetic field strength during magnetic storms is accompanied by a simultaneous decrease of the mid-latitude total electron content (TEC) over the entire dayside of the globe. The corresponding negative correlation coefficient is no less than 0.8, and the delay relative to the sudden commencement of magnetic storm is about 3–10 min. The effect is especially clearly pronounced for magnetic storms with sudden commencements (SSC). The analysis is carried out for a set of 90 to 300 GPS stations for 10 days (January 6 and April 23, 1998; April 6, June 8, July 13, 14, and 15, 2000; March 31, April 4 and 11, 2001) with various levels of geomagnetic activity (D st and K p varied from –6 to –295 nT and from 0 to 9, respectively). The amplitude of the response in the total electron content for the events considered was 0.1–0.4 × 1016 m–2 (which is a deviation of 0.2–2.6% from the TEC background value). The velocity of the disturbance motion from the dayside to the nightside was about 10–20 km/s. The results obtained agree with the data of ionospheric parameter measurements conducted earlier by methods with high temporal resolution.  相似文献   

20.
The dynamics of near plasma sheet electrons and ions (E 0.1–12.4 keV), ring current protons (E i 41–133 keV), and energetic electrons from the Earth's radiation belts (E e 97–1010 keV) is considered using the data from the Gorizont-34and Gorizont-35geosynchronous satellites from March 11–25, 1992. Peculiarities of this period are a long (more than 4 days) interval of the northward interplanetary magnetic field (B z> 0) and a high-speed stream of the solar wind with an enhanced particle density. The SC and compression of the magnetosphere to the geosynchronous orbit (GMC) preceded this interval. Under quiet and moderately disturbed geomagnetic conditions and under a prolonged northward interplanetary magnetic field, we observed a significant decrease of fluxes and softening of spectra of the electron component of plasma in the energy ranges of 0.1–12.4 keV and 97–1010 keV, and of the ion component of plasma at energies of 0.1–4 keV, while the intensity of 5–12.4 keV ion fluxes increases by about one order of magnitude. The peculiarities of distributions of energetic particle fluxes observed in the period under consideration can be associated with significant variations of the convection conditions and a decreased or fully suppressed injection of energetic electrons into the geosynchronous orbit region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号