首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
Since the first French flight in space in 1982, the CNES has developed a wide range of instruments, especially in the field of Neurosciences. The design of these instruments has considerably evolved from rather simple equipment up to much more sophisticated tools that are being specially tailored for these missions. Four major phases can be identified: -a simple adaptation of an echographe leading to the first neurosciences experiments (the ARAGATZ'88 mission), -the ILLUSIONS and VIMINAL instruments used during the ANTARES'92 and ALTAIR'93 missions, -the COGNILAB instrument developed for the CASSIOPEE'96 mission, to be re-used in 1997 and in 1999, -a preliminary design of the 1999 mission payload, including virtual reality concepts, in a modular design to adapt to the European COF. Aside from the evolution of scientific requirements, the experience gained during the flights led to progressive improvements in the different technical parts, including visual system, body restraint systems, accessories, such as a force feedback joystick, computer and software, etc. This paper describes the technical evolutions in the CNES Neurosciences program.  相似文献   

2.
航天器AIT数据平台的设计与应用   总被引:3,自引:3,他引:0  
文章介绍了航天器AIT数据平台的设计和实现方法。航天器AIT数据平台基于以往数据库进行了改造和集成,提供了交互式航天器AIT数据信息系统。文中给出了航天器AIT数据平台的多专业数据管理系统建设情况、平台设计及创新点,并结合实际工作讲述了应用情况。  相似文献   

3.
In the upcoming generation of satellite sensors, hyperspectral instruments will play a significant role. This payload type is considered world-wide within different future planning.Our team has now successfully finalized the Phase B study for the advanced hyperspectral mission EnMAP (Environmental Mapping and Analysis Programme), Germans next optical satellite being scheduled for launch in 2012. GFZ in Potsdam has the scientific lead on EnMAP, Kayser-Threde in Munich is the industrial prime.The EnMAP instrument provides over 240 continuous spectral bands in the wavelength range between 420 and 2450 nm with a ground resolution of 30 m×30 m. Thus, the broad science and application community can draw from an extensive and highly resolved pool of information supporting the modeling and optimization process on their results. The performance of the hyperspectral instrument allows for a detailed monitoring, characterization and parameter extraction of rock/soil targets, vegetation, and inland and coastal waters on a global scale supporting a wide variety of applications in agriculture, forestry, water management and geology. The operation of an airborne system (ARES) as an element in the HGF hyperspectral network and the ongoing evolution concerning data handling and extraction procedures, will support the later inclusion process of EnMAP into the growing scientist and user communities.  相似文献   

4.
Design of the Genesis spacecraft mission was derived from top-down flow of a basic and highly challenging science requirement: obtain samples of solar matter of such high quality and low background that they would sustain investigations of chemical and isotopic composition of the solar system for the coming decades, and well into the 21st Century. Within the framework of several dozen competing mission concepts for planetary exploration under NASA's Discovery program, Genesis needed to perform extremely high quality science (solar collection and sample return) for an affordable yet realistic level of effort. Key issues included preservation of collector cleanliness, avoidance of spacecraft-generated con-tamination, control of collector temperatures, simplicity of long-term operation, ability to efficiently reach the L1 operations point, reliability of avionics and other support systems, return to a specific landing locale on Earth, and provision for soft capture of the descent capsule via mid-air parachute snatch. Genesis is now in the final stages of spacecraft testing and system validation, the culmination of a highly interwoven effort to meet science objectives with innovative solutions that also satisfy engineering challenges for reliability, affordability, rapid development and a comprehensive test program. Genesis is scheduled for launch in February 2001.  相似文献   

5.
This paper gives a summary on the system concept and design of the focal plane assembly of AsteroidFinder/SSB, a small satellite mission which is currently under development at the German Aerospace Center (DLR). An athermal design concept has been developed in accordance to the requirements of the instrument and spacecraft. Key aspects leading to this approach have been a trade-off study of the mechanical telescope interface, the definition of electrical and thermal interfaces and a material selection which minimizes thermally induced stresses. As a novelty, the structure will be manufactured from a machinable AlN–BN composite ceramic. To enable rapid design iterations and development, an integrated modeling approach has been used to conduct a thermo-mechanical analysis of the proposed concept in order to proof its feasibility. The steady-state temperature distribution for various load cases and the resulting stress and strain within the assembly have both been computed using a finite element simulation.  相似文献   

6.
某型号卫星微振动试验研究及验证   总被引:1,自引:0,他引:1  
某型号卫星地面像元分辨率优于1 m,对成像质量要求很高。微振动成为制约该型号成像质量提升的关键因素之一。在完成微振动对成像质量影响的仿真分析后,对仿真分析的有效性和正确性进行了试验验证。该卫星微振动试验按照单机、分系统、系统和大系统4个层次展开:单机级试验主要通过六分量力测量微振动源的动态特性;分系统级试验主要通过结构加速度响应测量解决微振动传递特性是否正确的问题;系统级试验主要通过成像质量来验证微振动对光学系统影响的分析方法;大系统级试验主要通过在轨图像分析验证相关结论。上述试验对微振动从产生、传递到影响的各个环节进行了测试和验证。最终试验结果表明微振动相关工作达到预期目的,图像质量得到保证。  相似文献   

7.
This paper proposes an approach for a complex and innovative project requiring international contributions from different communities of knowledge and expertise. Designing a safe and reliable architecture for a manned mission to Mars or the Asteroids necessitates strong cooperation during the early stages of design to prevent and reduce risks for the astronauts at each step of the mission. The stake during design is to deal with the contradictions, antagonisms and paradoxes of the involved partners for the definition and modeling of a shared project of reference. As we see in our research which analyses the cognitive and social aspects of technological risks in major accidents, in such a project, the complexity of the global organization (during design and use) and the integration of a wide and varie d range of sciences and innovative technologies is likely to increase systemic risks as follows: human and cultural mistakes, potential defaults, failures and accidents. We identify as the main danger antiquated centralized models of organization and the operational limits of interdisciplinarity in the sciences. Beyond this, we can see that we need to take carefully into account human cooperation and the quality of relations between heterogeneous partners. Designing an open, self-learning and reliable exploration system able to self-adapt in dangerous and unforeseen situations implies a collective networked intelligence led by a safe process that organizes interaction between the actors and the aims of the project. Our work, supported by the CNES (French Space Agency), proposes an innovative approach to the coordination of a complex project.  相似文献   

8.
RA-2 is a second generation spaceborne radar altimeter designed and developed by ALENIA AEROSPAZIO (ALS) in the frame of the European Space Agency (ESA) ENVISAT programme. The project, started at beginning of 1990, reached its completion in October 1998 with the delivery of the Instrument Flight Model to Daimler-Benz Aerospace, Dornier (the mission prime contractor of ENVISAT) for its integration on the platform.

RA-2 only partly resembles in its characteristics those of ERS-1 / ERS-2 first generation Radar Altimeters, designed by ALS. Principal innovative features of the RA-2 are: dual frequency operation (Ku and S band) for ionospheric bias correction of the range measurements, enhanced precision range measurements over oceans, capability of including in the instrument telemetry data down linked to ground In-phase and Quadrature samples of individual Ku band radar echoes, resolution adaptivity and robust tracking algorithms to allow range measurements and radar echoes collection not only over open oceans but also at land-ocean boundaries, ice and land regions with the real objective of continuous global Earth topography mapping.

Aim of this paper is to provide an overview of the instrument key design characteristics and to present instrument pre-launch performance results derived from the evaluation of the test results gathered during the instrument integration and characterisation campaign of the Flight Model (FM).  相似文献   


9.
This paper highlights the design, qualification and mission performance of the tether deployer system on the second Young Engineers’ Satellite (YES2), that featured a tethered momentum transfer. The deployer is designed with a broad range of near-term tether applications in mind. The system contains the tether, including features to enhance safety and wound up in controlled manner onto a spool core, optical deployment sensors, a “barberpole” friction brake controlled by a stepper motor and a triple tether cutter system. To initiate the deployment a spring-based ejection system was developed, and to apply accurate momentum transfer a timer and release system is present on the subsatellite side. A small, 6 kg re-entry capsule was developed as subsatellite. On September 25th, 2007, YES2 deployed a 32 km tether in orbit and gathered a wealth of data. Confidence is gained from the mission results for use of the deployer in future missions.  相似文献   

10.
《Acta Astronautica》2003,52(2-6):203-209
The spacecraft designed to support the ESA Mars Express mission and its science payloads is customized around an existing avionics well suited to environmental and operational constraints of deep-space interplanetary missions. The reuse of the avionics initially developed for the Rosetta cometary program thanks to an adequate ESA cornerstone program budget paves the way for affordable planetary missions.The costs and schedule benefits inherited from reuse of up-to-date avionics solutions validated in the frame of other programs allows to focus design and development efforts of a new mission over the specific areas which requires customization, such as spacecraft configuration and payload resources. This design approach, combined with the implementation of innovative development and management solutions have enabled to provide the Mars Express mission with an highly capable spacecraft for a remarkably low cost. The different spacecraft subsystems are all based on adequate design solutions. The development plan ensures an exhaustive spacecraft verification in order to perform the mission at minimum risk. New management schemes contribute to maintain the mission within its limited funding.Experience and heritage gained on this program will allow industry to propose to Scientists and Agencies high performance, low-cost solutions for the ambitious Mars Exploration Program of the forthcoming decade.  相似文献   

11.
This paper proposes the application of a nonlinear control technique for coupled orbital and attitude relative motion of formation flying. Recently, mission concepts based on the formations of spacecraft that require an increased performance level for in-space maneuvers and operations, have been proposed. In order to guarantee the required performance level, those missions will be characterized by very low inter-satellite distance and demanding relative pointing requirements. Therefore, an autonomous control with high accuracy will be required, both for the control of relative distance and relative attitude. The control system proposed in this work is based on the solution of the State-Dependent Riccati Equation (SDRE), which is one of the more promising nonlinear techniques for regulating nonlinear systems in all the major branches of engineering. The coupling of the relative orbital and attitude motion is obtained considering the same set of thrusters for the control of both orbital and attitude relative dynamics. In addition, the SDRE algorithm is implemented with a timing update strategy both for the controller and the proposed nonlinear filter. The proposed control system approach has been applied to the design of a nonlinear controller for an up-to-date formation mission, which is ESA Proba-3. Numerical simulations considering a tracking signal for both orbital and attitude relative maneuver during an operative orbit of the mission are presented.  相似文献   

12.
13.
月球无人采样返回任务概念设想   总被引:5,自引:0,他引:5  
分析了无人月球采样任务,包括采样及封装方式分析,飞行过程选择与轨道初步方案,月面软着陆方式选择,月球轨道交会对接的需求,月面起飞上升的要点,地球大气高速再入返回器的外形选择等。在此基础上提出了三种不同的无人月球采样返回任务概念设想,并对其进行了简要比较和分析。  相似文献   

14.
简要介绍了成像链、成像系统和遥感系统的概念;对像质和像质差异的表征和度量、成像系统性能的表征等予以说明;重点探讨航天光学采样成像系统MTF的优化设计与MTFC问题,并给出讨论结果。  相似文献   

15.
航天光学采样成像系统MTF的优化设计与MTFC   总被引:1,自引:1,他引:1  
简要介绍了成像链、成像系统和遥感系统的概念;对像质和像质差异的表征和度量、成像系统性能的表征等予以说明;重点探讨航天光学采样成像系统MTF的优化设计与MTFC问题,并给出讨论结果。  相似文献   

16.
董瑛  尤政  郝云彩 《宇航学报》2002,23(4):12-14
基于空间线性可变滤波器的成像光谱仪SVFIS是为纳型卫星设计的高光谱遥感系统,它的最大优点是结构简单,因而机械稳定性和热稳定性非常高,特别适合在航天环境下使用。本文简要介绍了航天高光谱遥感和成像光谱仪,重点介绍SVFIS的系统结构并阐明它的工作原理。SVFIS的数据具有冗余性和延时性的特点,虽然有它不利的一面,但其影响程度依赖于系统设计。由于SVFIS数据中包含着地势起伏、目标运动和平台姿态变化的信息,为研究这些信息,我们对像面进行了特殊的设计,这是SVFIS的另一显著特点。  相似文献   

17.
小行星俘获(ACR)任务是美国Keck空间研究中心发起的一项深空探测任务。该任务计划选定一颗近地小行星,通过口袋式抓捕系统对其实施抓捕,并于2025年左右将其带回近月空间。文章介绍了ACR任务的内容和系统设计,具体包括:航天器总体构型、抓捕分系统、探测识别分系统和控制与推进分系统;对小行星抓捕的目标探测与识别、旋转匹配、抓捕、消旋、轨道转移等核心操作。基于ACR任务,提出了空间目标俘获技术的需求与应用、抓捕航天器系统设计的启示;基于我国目前的技术研究情况,总结分析了发展空间目标俘获任务所需的关键技术,如大功率柔性太阳翼、长时间大范围轨道机动、目标探测与识别、快速机动、目标抓捕与消旋。  相似文献   

18.
On February 13th 2012, the LARES satellite of the Italian Space Agency (ASI) was launched into orbit with the qualification flight of the new VEGA launcher of the European Space Agency (ESA). The payload was released very accurately in the nominal orbit. The name LARES means LAser RElativity Satellite and summarises the objective of the mission and some characteristics of the satellite. It is, in fact, a mission designed to test Einstein's General Relativity Theory (specifically ‘frame-dragging' and Lense-Thirring effect). The satellite is passive and covered with optical retroreflectors that send back laser pulses to the emitting ground station. This allows accurate positioning of the satellite, which is important for measuring the very small deviations from Galilei–Newton's laws. In 2008, ASI selected the prime industrial contractor for the LARES system with a heavy involvement of the universities in all phases of the programme, from the design to the construction and testing of the satellite and separation system. The data exploitation phase started immediately after the launch under a new contract between ASI and those universities. Tracking of the satellite is provided by the International Laser Ranging Service. Due to its particular design, LARES is the orbiting object with the highest known mean density in the solar system. In this paper, it is shown that this peculiarity makes it the best proof particle ever manufactured. Design aspects, mission objectives and preliminary data analysis will be also presented.  相似文献   

19.
载人小行星探测的任务特点与实施途径探讨   总被引:2,自引:1,他引:1  
介绍了载人小行星探测的发展现状,对目前美国基于"猎户座"飞船的载人小行星探测的概要方案进行了描述,包括探测器系统组成、运载火箭和飞行方案等内容。从速度增量、目标星引力等方面,分析了载人小行星探测的任务特点,并与载人火星探测、载人月球探测以及无人小行星探测的任务特点进行了比较。给出了载人小行星探测的实施途径建议,包括目标星选择、载人飞船系统设计等。讨论了其所涉及的推进、星际飞行安全保障、小行星表面行走等关键技术。研究结果可为我国开展载人深空探测提供参考。  相似文献   

20.
《Acta Astronautica》2010,66(11-12):1717-1722
With the installation of a new module and the relocation of three other modules, including multiple hand-offs from the station arm (SSRMS) to the shuttle arm (SRMS), International Space Station (ISS) assembly mission 10A/STS-120 was anticipated to be one of the most complicated ISS assembly missions ever attempted. The assembly operations became even more complex when a solar array wing (SAW) on the relocated Port-6 (P6) truss segment ripped while being extended. Repairing the torn SAW became the single most important objective for the remainder of STS-120, with future ISS assembly missions threatened by reduced power generation capacity if the SAW could not be repaired. Precise coordination between the space shuttle and ISS robotics teams led to an operational concept that combined the capabilities of the SRMS and SSRMS robotic systems in ways far beyond their original design capacities. Benefits of consistent standards for ISS robotic interfaces have been previously identified, but the advantages of having two such versatile and compatible robotic systems have never been quite so spectacular. This paper describes the role of robotics in the emergency SAW repair and highlights how versatility within space robotics systems can allow operations far beyond the intended design scenarios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号