首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
It is well known that the ionosphere affects radio wave propagation especially in the high frequency (HF) range. HF radio waves reflected by the ionosphere can reach considerable distances, often with changes in amplitude, phase, and frequency. The ionosphere is a dispersive in frequency and time, bi-refractive, absorbing medium, in which multipath propagation due to traveling irregularities is very frequent. The traveling irregularities undulate the reflecting ionospheric layer, introducing variations in signal amplitude (fading). In this multipath time variant channel fading is mainly considered, even though it is not the sole effect. Echo signals from a single reflection, as in ionospheric vertical sounding (VIS) techniques, are affected by a certain degree of variability even in quiet ionospheric conditions. In this work the behavior of the ionospheric channel is studied and characterized by observing the power variation of received echoes using the VIS technique. Multipath fading was analyzed quantifying the power variation of the signal echo due to irregularities on a temporal scale from 0.5 to 256 s. An experimental set-up derived from an ionosonde was implemented and the analysis was performed employing a special numerical algorithm operating off-line on the acquired time sequence of the signal. The gain-loss of the irregularity shapes are determined in some special cases.  相似文献   

2.
Both single and dual frequency GPS relative navigation filters may benefit from proper predictions of single differenced ionospheric delays. In this article, the single differenced ionospheric delays of GPS observations are predicted for the GRACE formation during the switch manoeuvre.Two prediction methods are considered. The first is based on a Taylor expansion to first order of a mapping function that maps slant total electron content measurements to vertical total electron content estimates. The second method fits a shape profile through undifferenced ionospheric data available. It then raytraces through this profile to estimate the difference in total electron content along the path of the GPS signals.Continuously changing ionospheric conditions hamper the assessment of the quality of the predictions. Comparison of both methods shows that the raytracing method performs better. The difference of predictions and measurements generally shows a smaller RMS than the measurements alone. However, both methods suffer from a number of systematically unpredicted observations, which arise from small unaccounted differential variations in electron densities along the path of the GPS signals. These prediction methods perform better when spacecraft separation is small. Baselines considered here range from tens of kilometres down to several hundred metres. When smallest spacecraft separation occurs (0.4 km), the single differenced ionospheric delays exhibit RMS values of 0.0089 m. The first method shows a difference between measurements and predictions with an RMS of 0.0081 m. For the second method the difference RMS is found to be 0.0067 m.  相似文献   

3.
The stability of GPS time and frequency transfer is limited by the fact that GPS signals travel through the ionosphere. In high precision geodetic time transfer (i.e. based on precise modeling of code and carrier phase GPS data), the so-called ionosphere-free combination of the code and carrier phase measurements made on the two frequencies is used to remove the first-order ionospheric effect. In this paper, we investigate the impact of residual second- and third-order ionospheric effects on geodetic time transfer solutions i.e. remote atomic clock comparisons based on GPS measurements, using the ATOMIUM software developed at the Royal Observatory of Belgium (ROB). The impact of third-order ionospheric effects was shown to be negligible, while for second-order effects, the tests performed on different time links and at different epochs show a small impact of the order of some picoseconds, on a quiet day, and up to more than 10 picoseconds in case of high ionospheric activity. The geomagnetic storm of the 30th October 2003 is used to illustrate how space weather products are relevant to understand perturbations in geodetic time and frequency transfer.  相似文献   

4.
There are remarkable ionospheric discrepancies between space-borne (COSMIC) measurements and ground-based (ionosonde) observations, the discrepancies could decrease the accuracies of the ionospheric model developed by multi-source data seriously. To reduce the discrepancies between two observational systems, the peak frequency (foF2) and peak height (hmF2) derived from the COSMIC and ionosonde data are used to develop the ionospheric models by an artificial neural network (ANN) method, respectively. The averaged root-mean-square errors (RMSEs) of COSPF (COSMIC peak frequency model), COSPH (COSMIC peak height model), IONOPF (Ionosonde peak frequency model) and IONOPH (Ionosonde peak height model) are 0.58 MHz, 19.59 km, 0.92 MHz and 23.40 km, respectively. The results indicate that the discrepancies between these models are dependent on universal time, geographic latitude and seasons. The peak frequencies measured by COSMIC are generally larger than ionosonde’s observations in the nighttime or middle-latitudes with the amplitude of lower than 25%, while the averaged peak height derived from COSMIC is smaller than ionosonde’s data in the polar regions. The differences between ANN-based maps and references show that the discrepancies between two ionospheric detecting techniques are proportional to the intensity of solar radiation. Besides, a new method based on the ANN technique is proposed to reduce the discrepancies for improving ionospheric models developed by multiple measurements, the results indicate that the RMSEs of ANN models optimized by the method are 14–25% lower than the models without the application of the method. Furthermore, the ionospheric model built by the multiple measurements with the application of the method is more powerful in capturing the ionospheric dynamic physics features, such as equatorial ionization, Weddell Sea, mid-latitude summer nighttime and winter anomalies. In conclusion, the new method is significant in improving the accuracy and physical characteristics of an ionospheric model based on multi-source observations.  相似文献   

5.
This paper presents traveling ionospheric disturbances (TIDs) observations from GPS measurements over the South African region during the geomagnetically disturbed period of 29–31 October 2003. Two receiver arrays, which were along two distinct longitudinal sectors of about 18°-20° and 27°-28° were used in order to investigate the amplitude, periods and virtual propagation characteristics of the storm induced ionospheric disturbances. The study revealed a large sudden TEC increase on 28 October 2003, the day before the first of the two major storms studied here, that was recorded simultaneously by all the receivers used. This pre-storm enhancement was linked to an X-class solar flare, auroral/magnetospheric activities and vertical plasma drift, based on the behaviour of the geomagnetic storm and auroral indices as well as strong equatorial electrojet. Diurnal trends of the TEC and foF2 measurements revealed that the geomagnetic storm caused a negative ionospheric storm; these parameters were depleted between 29 and 31 October 2003. Large scale traveling ionospheric disturbances were observed on the days of the geomagnetic storms (29 and 31 October 2003), using line-of-sight vertical TEC (vTEC) measurements from individual satellites. Amplitude and dominant periods of these structures varied between 0.08–2.16 TECU, and 1.07–2.13 h respectively. The wave structures were observed to propagate towards the equator with velocities between 587.04 and 1635.09 m/s.  相似文献   

6.
With the advent of modern global networks of dual-frequency Global Positioning System (GPS), total electron content (TEC) measurements along slant paths connecting GPS receivers and satellites at 22,000 km have become the largest data set available to ionospheric scientists. The TEC can be calculated from the time and phase delay in the GPS signal using the GPS Toolkit, but an unknown bias will remain. In addition, UHF/VHF radio beacons on board low-Earth-orbiting satellites can also be used to measure the electron content. However, the TEC measurements are obtained by integrating TEC differences between slant paths, but also contain biases. It is often necessary to use data assimilative algorithms like the Ionospheric Data Assimilation Three-Dimensional (IDA3D), and to treat both GPS- and LEO-beacon TEC measurements as relative data in order to conduct ionospheric studies.  相似文献   

7.
The intensity of large-scale traveling ionospheric disturbances (LS TIDs), registered using measurements of total electron content (TEC) during the magnetic storms on October 29–31, 2003, and on November 7–11, 2004, had been compared with that of local electron density disturbances. The data of TEC measurements at ground-based GPS receivers located near the ionospheric stations and the corresponding values of the critical frequency of the ionospheric F region foF2 were used for this purpose. The variations of TEC and foF2 were similar for all events mentioned above. The previous assumption that the ionospheric region with vertical extension from 150 to 200 km located near the F-layer maximum mainly contributes to the TEC variations was confirmed for the cases when the electron density disturbance at the F region maximum was not more than 50%. However, this region probably becomes vertically more extended when the electron density disturbance in the ionospheric F region is about 85%.  相似文献   

8.
Differences in the external part of the vertical geomagnetic component point to the existence of local inhomogeneities in the magnetosphere or the ionosphere. Usually used magnetic indices are not sufficient to express the state of ionosphere, the common used global Kp index derived in the three-hour interval does not indicate much more rapidly changes appearing in ionosphere. Magnetic index η reflects ionospheric disturbances when other indices show very quiet conditions. Data of ionospheric characteristics (foE, foEs, h’E, h’F2) during 28-day long quiet day conditions (Kp = 0–2) in 2004 were analyzed. The correlations between strong local disturbances in ionosphere during very quiet days and high values of magnetic index η were found. The most sensitive to magnetic influence – ionospheric E layer data (foE characteristic) – reaches median deviations up to (+0.8 MHz and −0.8 MHz) during very low magnetic activity (Kp = 0–1). The high peaks (2–2.7) of the magnetic index η correlate in time with large local median deviations of foE. Such local deviations can suggest local inhomogeneities (vertical drifts) in the ionosphere. The correlation in space is not trivial. The strong peak of η is situated between the positive and negative deviations of foE. Additional observation is connected with correlation in time of the high η value with the negative median deviations of h’F2 (in some cases up to −90 km). The analysis was based on one-minute data recorded at each of 20 European Magnetic Observatories working in the INTERMAGNET network and from 19 ionosondes for 2004. Ionospheric data are sparse in time and in space in opposite to the magnetic data. The map of the magnetic indices can suggest the behavior of ionospheric characteristics in the areas where we have no data.  相似文献   

9.
The r.m.s. errors in ionospheric parameters studied by the vertical HF-sounding method were determined for a monotonic height distribution of the electron density. Numerical estimates were obtained for errors in real heights, in vertical velocities of plasma motion and in effective electron collision frequencies deduced from experimental measurements of virtual heights, Doppler frequency shift and radio wave absorption respectively. Their dependencies on signal polarisation, working frequency range and geo-magnetic latitude of the observation point were determined.  相似文献   

10.
There is a lack of independent ionospheric data that can be used to validate GPS imaging results at mid latitudes over severe storm times. Doppler Orbitography and Radio positioning Integrated by Satellite (DORIS), a global network of dual-frequency ground to satellite observations, provides this missing data and here is employed as verification to show the accuracy of the ionospheric GPS images in terms of the total electron content (TEC). In this paper, the large-scale ionospheric structures that appeared during the strong geomagnetic storm of 20 November 2003 are reconstructed with a GPS tomographic algorithm, known as MIDAS, and validated with DORIS TEC measurements. The main trough shown in an extreme equatorward position in the ionospheric imaging over mainland Europe is confirmed by DORIS satellite measurements. Throughout the disturbed day, the variations of relative slant TECs between DORIS data and MIDAS results agree quite well, with the average of the mean differences about 2 TECu. We conclude that as a valuable supplement to GPS data, DORIS ionospheric measurements can be used to analyse TEC variations with a relatively high resolution, ∼10 s in time and tens of kilometres in space. This will be very helpful for identification of some highly dynamic structures in the ionosphere found at mid-latitudes, such as the main trough, TID (Travelling Ionospheric Disturbances) and SED (Storm Enhanced Density), and could be used as a valuable auxiliary data source in ionospheric imaging.  相似文献   

11.
On April 20, 2013, an earthquake of M7.0 occurred in Lushan, Sichuan province, China. This paper investigates the coseismic ionospheric anomalies using GPS (Global Positioning System) data from 23 reference stations in Sichuan province that are a part of the Crustal Movement Observation Network of China (CMONOC). The recorded results show that a clear ionospheric anomaly occurred within 15 min after the earthquake near the epicenter, and the occurrence time of the anomalies recorded by various stations is related to the distance from the epicenter. The maximum anomaly is 0.25 TECu, with a 2 min duration and the distance of the recording station to the epicenter is 83 km. Acoustic waves generated by the crustal vertical movement during the earthquake propagate up to the height of the ionosphere lead to the ionospheric anomaly, and the propagation speed of the acoustic wave is calculated as 0.72 ± 0.04 km/s based on the propagation time and propagation distance, consistent with the average speed of sound waves within a 0–450 km atmospheric height.  相似文献   

12.
The occurrence of radio signal fading events caused by ionospheric absorption plays an important role in the performance of radio-communication systems. It is necessary to know the magnitude and time-scale of such events in order to specify technical parameters of the communication system to be used. Generally, fading events are associated with solar flares, which are characterized by sudden increase in the solar X-ray flux that causes an increase in the ionization in the lower ionosphere. The abrupt increase of ionization causes the absorption of radio waves propagating in the Earth–ionosphere wave-guide and is reported as radio signal fading events. A simple experiment to monitor the behavior of lower ionosphere has been carried out at the Southern Space Observatory-SSO/INPE (29.43°S, 53.8°W), located in southern Brazil. The experiment is basically a computer controlled radio receiver that records the received signal strength of Amplitude Modulated (AM) radio signals in the HF (High Frequencies) range. We analyzed data of the 6 MHz beacon signal that has been transmitted by a broadcasting radio station located about 400 km from the observation site. In this work we present initial results of daily variation of the received signal strength and fading events associated with solar flares observed in the 6 MHz signal monitored by the experiment during 2001. X-ray solar flux data from the GOES-8 satellite were used to identify X-ray solar bursts associated with solar flares. Based on the one-year data collected by the experiment, a statistical summary of fading occurrences and their correlation with solar flares, as well as the distributions of time-scales and magnitudes of such events are presented.  相似文献   

13.
In order to investigate the regular variations of the ionosphere, the least-squares harmonic estimation is applied to the time series of ionospheric electron densities derived from about five years of Global Positioning System radio occultation observations by FORMOSAT-3/COSMIC satellites. The analysis is done for different latitudes and altitudes in the region of Iran. The least-squares harmonic estimation is found to be a powerful tool for the frequency analysis of the completely unevenly spaced time series of radio occultation measurements. Although the obtained results are slightly different from the exact expected cycles (i.e. annual and diurnal components with their Fourier decompositions, and the 27-day period) due to the low horizontal resolution of radio occultation measurements, high vertical resolution of the observations enables us to detect not only the total electron content variations but also periodic patterns of electron densities at different altitudes of the ionosphere. The dominant diurnal and annual signals together with their Fourier series decompositions are obtained, which are consistent with the previous analyses on the total electron content. In the equatorial anomaly band, the annual component is weaker than its Fourier decomposition periods. In particular, the semiannual period dominates the annual component, indicating the relationship between the semiannual variation of the electron densities and the ionospheric equatorial anomaly. From detection of the phases of the components, it is revealed that the annual signal generally has its maximum value in summers at high altitudes, and in the winters at low altitudes. This is probably due to the higher [O/N2] ratios in winter than in the summer in the lower ionosphere. Furthermore, the semiannual component mostly peaks around solstices or about a month before/after them.  相似文献   

14.
利用两个中纬度台站GPS观测数据提取的GPS卫星硬件延迟,分析了不同太阳活动情况下估算的硬件延迟稳定性和统计特征,结合同期电离层观测数据,研究了电离层状态对硬件延迟估算结果的影响.研究结果表明,基于太阳活动高年(2001年)GPS观测数据估算的硬件延迟稳定性要低于太阳活动低年GPS观测数据的估算结果,利用2001年GPS数据估算的卫星硬件延迟年标准偏差(RMS)平均值约为1TECU,而2009年GPS数据估算的卫星硬件延迟年标准偏差平均值约为0.8TECU.通过对2001年和2009年北京地区电离层F2层最大电子密度(NmF2)变化性分析,结合GPS硬件延迟估算方法对电离层时空变化条件的要求,认为硬件延迟稳定性与太阳活动强度的联系是由不同太阳活动条件下电离层变化的强度差异引起的.   相似文献   

15.
为了提高电离层虚高测量精度,介绍了利用电离层回波相位实现高精度虚高测量的方法,并以CADI(Canadian Advanced Digital Ionosonde)电离层数字测高仪为研究平台,进行组合脉冲控制和回波相位测量分析,开展了一系列虚高测量实验,并与传统的利用回波时间延迟的虚高测量方法进行了分析比较.实验结果表明,基于回波相位的测量分析方法与回波时延测量分析方法相比,其虚高测量精度高一个量级以上,这对精确反演电离层峰下电子浓度剖面及研究电离层精细结构具有重要意义.   相似文献   

16.
用电离层特性参量提取等效风场信息   总被引:1,自引:1,他引:1  
导出了利用中低纬电离层特性参量获取电离层F层峰区高度上等效风场(包含电场和风场信息在内)的基本方程,并尝试用该方法从电离层特性参量(峰高和临频)提取等效风场信息,利用武汉站DGS-256电离层数字测高仪数据及由美国Massachusetts Lowell大学最新版的剖面反演程序换算得到F层峰高,获得了武汉地区夏季至日点附近,冬季至日点附近,冬季地磁特别宁静的九天和冬季平均等效风场的初步特征,并利用Fejer经验电场模式计算冬季电场引起的垂直漂移,估计电场和风场对武汉地区的垂直等效风场的贡献大小,结果表明:等效风场呈现出白天与夜晚幅度和方向的差异。至日点附近冬季与夏季白天的幅度差异以及明显的凌晨凹陷现象;平均情况下,垂直等效风场幅度和方向的变化主要是由中性风引起,受电场的影响不大。  相似文献   

17.
针对中国区域连续运行参考站接收机野值会干扰星基增强系统(SBAS)电离层异常事件提取的问题,提出了一种基于电离层垂直延迟时间梯度的野值检测方法。首先,介绍了电离层延迟数据的提取方法;然后,论述了依据野值和电离层异常的不同时空相关特性进行野值检测的方法,并用单双频定位误差结果验证了野值检测的正确性;最后,对检测结果进行了分析。结果表明:该方法可有效区分野值和电离层异常;在中国大陆构造环境监测网络200多个参考站中,野值检测所剔除的参考站数目在3~10个,对电离层穿透点空间分布的影响在可接受范围内。   相似文献   

18.
This paper presents the global spatial (latitude and altitude) structure and temporal variability of the ∼23-day ionospheric zonally symmetric (s = 0) planetary wave (PW) seen in the Northern winter of 2008/2009 (October 2008–March 2009). It is shown that these ∼23-day ionospheric oscillations are forced from PWs propagating from below. The COSMIC ionospheric parameters foF2 and hmF2 and electron density at fixed altitudes and the SABER temperatures were utilized in order to define the waves which are present simultaneously in the atmosphere and ionosphere. The long-period PWs from the two data sets have been extracted through the same data analysis method. The similarity between the lower thermospheric ∼23-day (s = 0) temperature PW and its ionospheric electron density response provides valuable and strong experimental evidence for confirming the paradigm of atmosphere–ionosphere coupling.  相似文献   

19.
For the magnetospheric storm of May 14–16, 1997 geophysical data of satellites DMSP and IMP-8 are compared with data of radio propagation on the high-latitude HF radio path of Heiss Island – St. Petersburg and data from European ionosondes. Peculiarities of variations of the operational frequencies range MOF–LOF (maximum and lowest observed frequencies) on the path were considered. The range has been determined by the method of oblique ionospheric sounding (OIS). The latter is more informative for observations during a magnetic storm compared to the vertical sounding method. Nevertheless, an analysis of variations of the critical frequency of the ionospheric F2 layer from the chain of European ionosondes was carried out. For interpretation of results, data of magnetospheric parameters, AE-indexes and riometer data were used. The variations of both frequency range on the path and critical frequencies of the F2 layer through the ionosondes chain during the disturbed period had certain regularities of behaviour. These regularities are being explained from the physical point of view. The analysis of the satellite DMSP data has showed that a magnetospheric disturbance causes displacement equatorward of precipitation and some growth of its width and energy.  相似文献   

20.
To study the variation of ionospheric electron and ion temperatures with solar activity the data of electron and ion temperatures were recorded with the help of Retarding Potential Analyzer payload aboard Indian SROSS-C2 satellite at an average altitude of ∼500 km. The main focuses of the paper is to see the diurnal, seasonal and latitudinal variations of electron and ion temperatures during periods of minimum to maximum solar activity. The ionospheric temperatures in the topside show strong variations with altitude, latitude, season and solar activity. In present study, the temperature variations with latitude, season and solar activity have been studied at an average altitude ∼500 km. The peak at sunrise has been observed during all seasons, in both electron and ion temperatures. Further, the ionospheric temperatures vary with latitude in day time. The latitudinal variation is more pronounced for low solar activity than for high solar activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号