首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In August 2005 NASA launched a large orbiting science observatory, the Mars Reconnaissance Orbiter (MRO), for what is scheduled to be a 5.4-year mission. High resolution imaging of the surface is a principal goal of the mission. One consequence of this goal however is the need for a low science orbit. Unfortunately this orbit fails the required 20-year orbit life set in NASA Planetary Protection (PP) requirements [NASA. Planetary protection provisions for robotic extraterrestrial missions, NASA procedural requirements NPR 8020.12C, NASA HQ, Washington, DC, April 2005.]. So rather than sacrifice the science goals of the mission by raising the science orbit, the MRO Project chose to be the first orbiter to pursue the bio-burden reduction approach.  相似文献   

2.
The ability to extract and process resources at the site of exploration into useful products such as propellants, life support and power system consumables, and radiation and rocket exhaust plume debris shielding, known as In-Situ Resource Utilization or ISRU, has the potential to significantly reduce the launch mass, risk, and cost of robotic and human exploration of space. The incorporation of ISRU into missions can also significantly influence technology selection and system development in other areas such as power, life support, and propulsion. For example, the ability to extract or produce large amounts of oxygen and/or water in-situ could minimize the need to completely close life support air and water processing system cycles, change thermal and radiation protection of habitats, and influence propellant selection for ascent vehicles and surface propulsive hoppers. While concepts and even laboratory work on evaluating and developing ISRU techniques such as oxygen extraction from lunar regolith have been going on since before the Apollo 11 Moon landing, no ISRU system has ever flown in space, and only recently have ISRU technologies been developed at a scale and at a system level that is relevant to actual robotic and human mission applications. Because ISRU hardware and systems have never been demonstrated or utilized before on robotic or human missions, architecture and mission planners and surface system hardware developers are hesitant to rely on ISRU products and services that are critical to mission and system implementation success. To build confidence in ISRU systems for future missions and assess how ISRU systems can best influence and integrate with other surface system elements, NASA, with international partners, are performing analog field tests to understand how to take advantage of ISRU capabilities and benefits with the minimum of risk associated with introducing this game-changing approach to exploration. This paper will describe and review the results of four analog field tests (Moses Lake in 6/08, Mauna Kea in 11/08, Flagstaff in 9/09, and Mauna Kea in 1/10) that have begun the process of integrating ISRU into robotic and human exploration systems and missions, and propose future ISRU-related analog field test activities that can be performed in collaboration with non-US space agencies.  相似文献   

3.
Time-domain astrophysics will enter a golden era towards the end of this decade with the advent of major facilities across the electromagnetic spectrum and in the multi-messenger realms of gravitational wave and neutrino. In the soft X-ray regime, the novel micro-pore lobster-eye optics provides a promising technology to realise, for the first time, focusing X-ray optics for wide-angle monitors to achieve a good combination of sensitivity and wide field of view. In this context Einstein Probe, a soft X-ray all-sky monitor mission, was proposed and selected as a candidate mission of priority in the space science programme of the Chinese Academy of Sciences. This paper reviews the most important science developments and key questions in this field towards 2020 and beyond, and how to achieve them technologically. It also introduces the Einstein Probe mission, including its key science goals and mission definition, as well as some of the key technological issues.   相似文献   

4.
Current planetary quarantine considerations focus on robotic missions and attempt a policy of no biological contamination. The presence of humans on Mars, however, will inevitably result in biological contamination and physical alteration of the local environment. The focus of planetary quarantine must therefore shift toward defining and minimizing the inevitable contamination associated with humans. This will involve first determining those areas that will be affected by the presence of a human base, then verifying that these environments do not harbor indigenous life nor provide sites for Earth bacteria to grow. Precursor missions can provide salient information that can make more efficient the planning and design of human exploration missions. In particular, a robotic sample return mission can help to eliminate the concern about returning samples with humans or the return of humans themselves from a planetary quarantine perspective. Without a robotic return the cost of quarantine that would have to be added to a human mission may well exceed the cost of a robotic return mission. Even if the preponderance of scientific evidence argues against the presence of indigenous life, it must be considered as part of any serious planetary quarantine analysis for missions to Mars. If there is life on Mars, the question of human exploration assumes an ethical dimension.  相似文献   

5.
嫦娥工程技术发展路线   总被引:4,自引:2,他引:2       下载免费PDF全文
月球是距离地球最近的天体,以其独特的空间位置、广阔的科学探索前景,成为人类地外天体探测和资源利用的首选目标和持续选择。简要总结世界各主要航天大国的探月发展历程和后续计划,详细介绍了我国探月工程(嫦娥工程)"绕""落""回"三步走的发展思路和技术路线,分析了后续的发展方向,提出了2030年前月球机器人科研站任务设想。  相似文献   

6.
This paper analyses the possibility of exploiting a small spacecrafts constellation around Mars to ensure a complete and continuous coverage of the planet, for the purpose of supporting future human and robotic operations and taking advantage of optical transmission techniques. The study foresees such a communications mission to be implemented at least after 2020 and a high data-rate requirement is imposed for the return of huge scientific data from massive robotic exploration or to allow video transmissions from a possible human outpost.  相似文献   

7.
A novel concept is presented in this paper for a human mission to the lunar L2 (Lagrange) point that would be a proving ground for future exploration missions to deep space while also overseeing scientifically important investigations. In an L2 halo orbit above the lunar farside, the astronauts aboard the Orion Crew Vehicle would travel 15% farther from Earth than did the Apollo astronauts and spend almost three times longer in deep space. Such a mission would serve as a first step beyond low Earth orbit and prove out operational spaceflight capabilities such as life support, communication, high speed re-entry, and radiation protection prior to more difficult human exploration missions. On this proposed mission, the crew would teleoperate landers/rovers on the unexplored lunar farside, which would obtain samples from the geologically interesting farside and deploy a low radio frequency telescope. Sampling the South Pole-Aitken basin, one of the oldest impact basins in the solar system, is a key science objective of the 2011 Planetary Science Decadal Survey. Observations at low radio frequencies to track the effects of the Universe’s first stars/galaxies on the intergalactic medium are a priority of the 2010 Astronomy and Astrophysics Decadal Survey. Such telerobotic oversight would also demonstrate capability for human and robotic cooperation on future, more complex deep space missions such as exploring Mars.  相似文献   

8.
This paper examines mission simulation as an approach to develop requirements for automation and robotics for Advanced Life Support Systems (ALSS). The focus is on requirements and applications for command and control, control and monitoring, situation assessment and response, diagnosis and recovery, adaptive planning and scheduling, and other automation applications in addition to mechanized equipment and robotics applications to reduce the excessive human labor requirements to operate and maintain an ALSS. Based on principles of systems engineering, an approach is proposed to assess requirements for automation and robotics using mission simulation tools. First, the story of a simulated mission is defined in terms of processes with attendant types of resources needed, including options for use of automation and robotic systems. Next, systems dynamics models are used in simulation to reveal the implications for selected resource allocation schemes in terms of resources required to complete operational tasks. The simulations not only help establish ALSS design criteria, but also may offer guidance to ALSS research efforts by identifying gaps in knowledge about procedures and/or biophysical processes. Simulations of a planned one-year mission with 4 crewmembers in a Human Rated Test Facility are presented as an approach to evaluation of mission feasibility and definition of automation and robotics requirements.  相似文献   

9.
Chang'E-1 and Chang'E-2 of China's Lunar Exploration Program (CLEP) have successfully achieved their mission. At the present time, only Chang'E-3 is still in operation, which was successfully launched on December 2, 2013. Chang'E-3 probe is the third robotic lunar mission of CLEP, which consists of a lander and a rover, with eight payloads on board the spacecraft. Up to December 21, 2015, more than 2.86TB raw data were received from these instruments onboard Chang'E-3 probe. A series of research results have been achieved. This paper gives a detailed introduction to the new scientific results obtained from Chang'E-3 missions.   相似文献   

10.
With its ability to look at bright galactic X-ray sources with sub-millisecond time resolution, the Rossi X-ray Timing Explorer (RXTE) discovered that the X-ray emission from accreting compact stars shows quasi-periodic oscillations on the dynamical timescales of the strong field region. RXTE showed also that waveform fitting of the oscillations resulting from hot spots at the surface of rapidly rotating neutron stars constrain their masses and radii. These two breakthroughs suddenly opened up a new window on fundamental physics, by providing new insights on strong gravity and dense matter. Building upon the RXTE legacy, in the Cosmic Vision exercise, testing General Relativity in the strong field limit and constraining the equation of state of dense matter were recognized recently as key goals to be pursued in the ESA science program for the years 2015–2025. This in turn identified the need for a large (10 m2 class) aperture X-ray observatory. In recognition of this need, the XEUS mission concept which has evolved into a single launch L2 formation flying mission will have a fast timing instrument in the focal plane. In this paper, I will outline the unique science that will be addressed with fast X-ray timing on XEUS.  相似文献   

11.
The planning and execution of manned and robotic missions to Mars present a wide range of jurisprudential issues. Provisions to prevent the disruption of natural celestial environments, as well as damage to the environment of Earth by the return of extraterrestrial materials, are important components of the law applicable to mankind's activities in outer space, and have been supplemented by scientifically instituted planetary protection policies. However, divergent legal regimes may exist, as the space treaties in force are neither uniform in their provisions, nor identical as to the states which have signed, ratified, or adopted the international agreements. The legal requirements applicable to a specific mission will vary depending on the entities conducting the program and specific mission profile. This article analyzes the divergent international legal regimes together with the factors which will influence the determination of the standards of conduct which will govern manned and robotic missions to Mars.  相似文献   

12.
The Swarm mission was selected as the 5th mission in ESA’s Earth Explorer Programme in 2004. This mission aims at measuring the Earth’s magnetic field with unprecedented accuracy. This will be done by a constellation of three satellites, where two will fly at lower altitude, measuring the gradient of the magnetic field, and one satellite will fly at higher altitude. The measured magnetic field is the sum of many contributions including both magnetic fields and currents in the Earth’s interior and electrical currents in Geospace. In order to separate all these sources electric field and plasma measurements will also be made to complement the primary magnetic field measurements. Together these will allow the deduction of information on a series of solid earth processes responsible for the creation of the fields measured. The completeness of the measurements on each satellite and the constellation aspect, however, implies simultaneous observations of a unique set of important electrodynamical parameters crucial for the understanding of the physical processes in Geospace, which are an important part of the objectives of the International Living With a Star Programme, ILWS. In this paper an overview of the Swarm science objectives, the mission concept, the scientific instrumentation, and the expected contribution to the ILWS programme will be summarized.  相似文献   

13.
The upcoming fleet of lunar missions, and the announcement of new lunar exploration initiatives, show an exciting “Journey to the Moon”, covering recent results, science, future robotic and human exploration. We review some of the questions, findings and perspectives given in the papers included in this issue of Advances in Space Research.  相似文献   

14.
空间科学任务协同设计过程优化   总被引:2,自引:0,他引:2  
为了对概念设计阶段空间科学任务协同设计过程进行合理规划, 减少设计反馈, 降低系统耦合度, 提出了设计结构矩阵(DSM)过程建模和遗传算法(GA) 过程优化算法. 该方法采用DSM对空间科学任务设计活动序列进行建模, 通过DSM描述设计活动间的信息依赖关系, DSM上三角之和代表该设计活动序列设计反馈次数; 将 DSM对应的设计活动序列视为染色体, 采用GA进行序列优化, 最小化设计反馈次数. 通过过程优化算法获取最佳设计活动序列, 优化设计过程, 降低系统耦合度. 空间科学任务实例分析结果表明, 该方法能够有效应用于空间科学任务协同设计的过程建模和过程优化, 指导设计过程的制定.   相似文献   

15.
The Aditya-L1 is first Indian solar mission scheduled to be placed in a halo orbit around the first Lagrangian point (L1) of Sun-Earth system in the year 2018–19. The approved scientific payloads onboard Aditya-L1 spacecraft includes a Fluxgate Digital Magnetometer (FGM) to measure the local magnetic field which is necessary to supplement the outcome of other scientific experiments onboard. The in-situ vector magnetic field data at L1 is essential for better understanding of the data provided by the particle and plasma analysis experiments, onboard Aditya-L1 mission. Also, the dynamics of Coronal Mass Ejections (CMEs) can be better understood with the help of in-situ magnetic field data at the L1 point region. This data will also serve as crucial input for the short lead-time space weather forecasting models.The proposed FGM is a dual range magnetic sensor on a 6?m long boom mounted on the Sun viewing panel deck and configured to deploy along the negative roll direction of the spacecraft. Two sets of sensors (tri-axial each) are proposed to be mounted, one at the tip of boom (6?m from the spacecraft) and other, midway (3?m from the spacecraft). The main science objective of this experiment is to measure the magnitude and nature of the interplanetary magnetic field (IMF) locally and to study the disturbed magnetic conditions and extreme solar events by detecting the CME from Sun as a transient event. The proposed secondary science objectives are to study the impact of interplanetary structures and shock solar wind interaction on geo-space environment and to detect low frequency plasma waves emanating from the solar corona at L1 point. This will provide a better understanding on how the Sun affects interplanetary space.In this paper, we shall give the main scientific objectives of the magnetic field experiment and brief technical details of the FGM onboard Aditya-1 spacecraft.  相似文献   

16.
The balloon mission “Sunrise” consists of a 1m lightweight solar telescope equipped with a powerful spectro-graph-polarimeter and a multi-channel filtergraph for the visible and the UV. The science goals of Sunrise are focussed on, but not limited to, the investigation of the solar surface magnetism. The key questions include the generation and maintenance of the variable magnetic field, the structure and dynamics of the chromosphere, and the interaction of material flow and magnetic field in sunspots.  相似文献   

17.
Solar Ring (SOR) is a proposed space science mission to monitor and study the Sun and inner heliosphere from a full 360° perspective in the ecliptic plane. It will deploy-three 120°-separated spacecraft on the 1-AU orbit. The first spacecraft, S1, locates 30° upstream of the Earth, the second, S2, 90° downstream, and the third, S3, completes the configuration. This design with necessary science instruments, e.g., the Doppler-velocity and vector magnetic field imager, wide-angle coronagraph, and in-situ instruments, will allow us to establish many unprecedented capabilities: (1) provide simultaneous Doppler-velocity observations of the whole solar surface to understand the deep interior, (2) provide vector magnetograms of the whole photosphere — the inner boundary of the solar atmosphere and heliosphere, (3) provide the information of the whole lifetime evolution of solar featured structures, and (4) provide the whole view of solar transients and space weather in the inner heliosphere. With these capabilities, Solar Ring mission aims to address outstanding questions about the origin of solar cycle, the origin of solar eruptions and the origin of extreme space weather events. The successful accomplishment of the mission will construct a panorama of the Sun and inner-heliosphere, and therefore advance our understanding of the star and the space environment that holds our life.  相似文献   

18.
KuaFu Mission     
The KuaFu mission-Space Storms, Aurora and Space Weather Explorer-is an "L1+Polar" triple satellite project composed of three spacecraft: KuaFu-A will be located at L1 and have instruments to observe solar EUV and FUV emissions, and white-light Coronal Mass Ejections (CMEs), and to measure radio waves, the local plasma and magnetic field,and high-energy particles. KuaFuB1 and KuaFu- B2 will bein polar orbits chosen to facilitate continuous 24 hours a day observation of the north polar Aurora Oval. The KuaFu mission is designed to observe the complete chain of disturbances from the solar atmosphere to geospace, including solar flares, CMEs, interplanetary clouds, shock waves, and their geo-effects, such as magnetospheric sub-storms and magnetic storms, and auroral activities. The mission may start at the next solar maximum (launch in about 2012), and with an initial mission lifetime of two to three years. KuaFu data will be used for the scientific study of space weather phenomena, and will be used for space weather monitoring and forecast purposes. The overall mission design, instrument complement, and incorporation of recent technologies will target new fundamental science, advance our understanding of the physical processes underlying space weather, and raise the standard of end-to-end monitoring of the Sun-Earth system.  相似文献   

19.
Rosetta is a correrstone mission of the science programme of the European Space Agency (ESA) and it has been studied as a collaborative project with NASA. The major scientific objectives of Rosetta is to return cometary samples to Earth. About 20 kg of cometary material from up to 3m below the surface would be made available to the scientific community for analysis. Since relatively little is known a priory about the environment to be expected, the mission design must be based on a limited body of knowledge and rely on autonomy. The paper outlines the main mission characteristics and the experimental approach to demonstrate the mission feasibility.  相似文献   

20.
胸鳍摆动推进模式机器鱼深度控制   总被引:1,自引:1,他引:0  
提出一种基于专家PID和模糊控制的双闭环深度控制方法,用于实现胸鳍摆动推进模式机器鱼的定深控制.通过控制机器鱼的尾舵摆动角度,可以使机器鱼产生一定的俯仰力矩,从而改变机器鱼的俯仰姿态,实现上浮或下潜运动.给出了机器鱼的相关定深实验,并分析了不同目标深度下俯仰角度初始变化范围存在差异的原因.实验结果表明:本文提出的定深控制方法能够使机器鱼比较准确地稳定在目标深度,以及能够改善机器鱼到达目标深度后稳态游动时的俯仰稳定性,能够较好地实现机器鱼的深度控制.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号