首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the free and full access to images from Sentinel-2 satellite, the interest to use this data for quantitative retrieval of vegetation parameters is ever-increasing. LAI and chlorophyll are two key variables which are desired for studying productivity, nutrient and stress status of vegetation. Studies carried out on croplands using simulated Sentinel-2 MSI and parametric approach have identified vegetation indices (VIs) with high sensitivity to LAI and chlorophyll. To test how Sentinel-2 red-edge based VIs perform for retrieval of LAI and Chlorophyll of tropical mixed forest canopies, this study has been performed. The field measurements of LAI and chlorophyll content were recorded in a total of 28 ESUs (Elementary Sampling Units) in Bhakra range in the Tarai Central Forest Division, Uttarakhand (India). The in-situ measurements were statistically correlated with Sentinel-2VIs and strength of correlation was validated using Predicted Residual Error Sum of Squares (PRESS) statistic. Field LAI corrected for foliage clumpiness effect improved correlation of VIs with LAI. Among all VIs tested, Normalized Difference Index (NDI) offered highest positive correlation (R2 = 0.79, p < 0.05) with LAI while Red-Edge Chlorophyll Index (RECI) (R2 = 0.83, RMSE = 0.24 g/m2, p < 0.05) and Simple Ratio (SR) 740/705 (R2 = 0.79, RMSE = 0.27 g/m2, p < 0.05) were the most closely related to chlorophyll content. VIs with red-edge and NIR combinations offered best results.  相似文献   

2.
Updated information of rubber plantations is essential for assessing socioeconomic and environmental impacts, especially in the emerging region of northern tropics. Here, a phenological method was modified to detect rubber plantations using Landsat Operational Land Imager (OLI) imagery in Phongsaly Province of northern Laos, where it begun a rubber boom in the mid-2000s due to geo-economic cooperation. It highlighted the landscape and pixel differences of deciduous rubber plantations in the tri-temporal phases (i.e., pre-defoliation, defoliation, and foliation) during the dry season due to phenological changes. Six commonly used vegetation indices (VIs), including the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Land Surface Water Index (LSWI), Atmospherically Resistant Vegetation Index (ARVI), Normalized Burn Ratio (NBR and NBR2) derived from OLI imagery during 2013–2016 were compared to determine the most suitable VI for discriminating the phenological differences of rubber plantations from natural forests. Then, the Differences of Normalized Burn Ratio (DNBR) was applied to generate the 30 m map of rubber plantations in 2016, by combining two masks of Landsat-derived forest and suitable elevation for rubber trees cultivation. The resultant map of rubber plantations had a classification accuracy of 93.7% and the Kappa coefficient of 0.848. Our study demonstrated the usefulness of the Landsat-derived tri-temporal phenological DNBR approach in an emerging region of northern Laos, despite requiring more scenes compared with single- and double temporal window methods.  相似文献   

3.
Development of new methods for estimating biophysical parameters can be considered one of the most important targets for the improvement of grassland parameters estimation at full canopy cover. In fact, accurate assessment methods of biophysical characteristics of vegetation are needed in order to avoid the uncertainties of carbon terrestrial sinks.

Remote sensing is a valid tool for scaling up ecosystem measurements towards landscape levels serving a wide range of applications, many of them being related to carbon-cycle models. The aim of this study was to test the suitability of satellite platform sensors in estimating grassland biophysical parameters such as LAI, biomass, phytomass, and Green herbage ratio (GR). Also, we wanted to compare some of the most common NIR and red/green-based vegetation indices with ones that also make use of the MIR band, in relation to their ability to predict grassland biophysical parameters.

Ground-truth measurements were taken on July 2003 and 2004 on the Monte Bondone plateau (Italian Alps, Trento district) in grasslands varying in land use and management intensities. From satellite platforms, an IRS-1C-LISS III image (18/07/2003; 25 m resolution in the visible-NIR and 70 m resolution in the MIR) and a SPOT 5 image (27/07/2004, 10 m resolution in the visible-NIR and MIR) were used.

LAI, biomass, and phytomass measurements showed logarithmic relationships with the investigated NIR and red/green-based indices. GreenNDVI showed the highest R2 values (0.59, IRS 2003; 0.60, SPOT 2004). Index saturation occurred above approximately 100–150 g m−2 of biomass (LAI 1.5–2). On the other hand, GR relationships were shown to be linear. MIR-based indices performed better than NIR and red/green-based ones in estimating biophysical variables, with no saturation effect. Biomass showed a linear regression with Canopy Index (MIR/green ratio) and with the Normalised Canopy Index (NCI) calculated as a normalised difference between MIR and green bands (IRS: R2 = 0.91 and 0.90, respectively. SPOT: R2 = 0.63 and 0.64). Similar correlations could also be found for LAI and phytomass, and GR predictability was shown to be higher than NDVI and GreenNDVI. According to these results obtained in the investigated areas, phytomass, biomass, LAI, and GR are linearly correlated with the investigated MIR band indices and as a result, these parameters could be estimated from the adopted satellite platforms with limited saturation problems.  相似文献   


4.
Remote sensing applications have greatly enhanced ability to monitor and manage in the areas of forestry. Accurate measurements of regional and global scale vegetation dynamics (phenology) are required to improve models and understanding of inter-annual variability in terrestrial ecosystem carbon exchange and climate–biosphere interactions. Study of vegetation phenology is required for understanding of variability in ecosystem. In this paper, monitoring of vegetation dynamics using time series of satellite data is presented. Vegetation variability (vegetation rate) in different topoclimatic areas is investigated. Original software using IDL interactive language for processing of satellite long-term data series was developed. To investigate growth dynamics vegetation rate inferred from remote sensing was used. All estimations based on annual time series of Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. Vegetation rate for Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI) was calculated using MODIS data. The time series covers spring seasons of each of 9 years, from 2000 to 2008. Comparison of EVI and NDVI derived growth rates has shown that NDVI derived rates reveal spatial structure better. Using long-term data of vegetation rates variance was estimated that helps to reveal areas with anomalous growth rate. Such estimation shows sensitivity degree of different areas to different topoclimatic conditions. Woods of heights depend on spatial topoclimatic variability unlike woods of lowlands. Principal components analysis shows vegetation with different rate conditions. Also it reveals vegetation of same type in areas with different conditions. It was demonstrated that using of methods for estimating the dynamic state of vegetation based on remote sensing data enables successful monitoring of vegetation phenology.  相似文献   

5.
Satellite data, taken from the National Oceanic and Atmospheric Administration (NOAA) have been proposed and used for the detection and the cartography of vegetation cover in North Africa. The data used were acquired at the Analysis and Application of Radiation Laboratory (LAAR) from the Advanced Very High Resolution Radiometer (AVHRR) sensor of 1 km spatial resolution. The Spectral Angle Mapper Algorithm (SAM) is used for the classification of many studies using high resolution satellite data. In the present paper, we propose to apply the SAM algorithm to the moderate resolution of the NOAA AVHRR sensor data for classifying the vegetation cover. This study allows also exploiting other classification methods for the low resolution. First, the normalized difference vegetation index (NDVI) is extracted from two channels 1 and 2 of the AVHRR sensor. In order to obtain an initial density representation of vegetal formation distribution, a methodology, based on the combination between the threshold method and the decision tree, is used. This combination is carried out due to the lack of accurate data related to the thresholds that delimit each class. In a second time, and based on spectral behavior, a vegetation cover map is developed using SAM algorithm. Finally, with the use of low resolution satellite images (NOAA AVHRR) and with only two channels, it is possible to identify the most dominant species in North Africa such as: forests of the Liege oaks, other forests, cereal’s cultivation, steppes and bar soil.  相似文献   

6.
Moderate Resolution Imaging Radiometer (MODIS) gross primary productivity (GPP) has been used widely to study the global carbon cycle associated with terrestrial ecosystems. The retrieval of the current MODIS productivity with a 1 × 1 km2 resolution has limitations when presenting subgrid scale processes in terrestrial ecosystems, specifically when forests are located in mountainous areas, and shows heterogeneity in vegetation type due to intensive land use. Here, we evaluate MODIS GPP (MOD17) at Gwangneung deciduous forest KoFlux tower (deciduous forest; GDK) for 2006–2010 in Korea, where the forests comprise heterogeneous vegetation cover over complex terrain. The monthly MODIS GPP data overestimated the GDK measurements in a range of +15% to +34% and was fairly well correlated (R = 0.88) with the monthly variability at GDK during the growing season. In addition, the MODIS data partly represented the sharp GPP reduction during the Asian summer monsoon (June–September) when intensive precipitation considerably reduces solar radiation and disturbs the forest ecosystem. To examine the influence of subgrid scale heterogeneity on GPP estimates over the MODIS scale, the individual vegetation type and its area within a corresponding MODIS pixel were identified using a national forest type map (∼71-m spatial resolution), and the annual GPP in the same area as the MODIS pixel was estimated. This resulted in a slight reduction in the positive MODIS bias by ∼10%, with a high degree of uncertainty in the estimation. The MODIS discrepancy for GDK suggests further investigation is necessary to determine the MODIS errors associated with the site-specific aerodynamic and hydrological characteristics that are closely related to the mountainous topography. The accuracy of meteorological variables and the impact of the very cloudy conditions in East Asia also need to be assessed.  相似文献   

7.
The paper shows the efficiency of an application of the vegetation index image time series to determine long-term vegetation dynamics. The influence of large industrial centers of Siberia on the near-by vegetation is demonstrated. The analysis of the data shows that the influence of industrial waste is stronger in the Siberian North. These regions are characterized by critical conditions for vegetation existence. In the south of the Krasnoyarsk region, human impact is also important, but the possibility of vegetation self-rehabilitation is higher. The present-day economic situation in Russia is unique, with a temporary abrupt fall of industrial production and its following increase. Thus, we managed to analyze the degree of human impact on the environment within a relatively short-time interval.  相似文献   

8.
This research explores the sensitivity of vegetation in China to El-Niño/Southern Oscillation (ENSO) events from 1982 to 2006. The ENSO events are defined by the Multivariate ENSO Index (MEI), and variation in vegetation cover is captured by the Advanced Very High Resolution Radiometer (AVHRR) Normalized Difference Vegetation Index (NDVI). Pearson’s χ2 test was used to identify the areas where the variation in vegetation was sensitive to El Niño and La Niña events. The difference in the sensitivity of various ecosystems was investigated using the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product in 2000. Composite NDVI graphs during El Niño, La Niña and non-ENSO years were also produced to investigate the ENSO relationship with the six vegetation ecosystems during El Niño, La Niña and normal phases. The results show that most of the ENSO-sensitive land in China is only affected by one of the two phases of ENSO events, and the area of El Niño-sensitive vegetation is much larger than that of La Niña-sensitive vegetation. North China and the Hengduan Mountains are the two cores of the El Niño-sensitive areas, while the La Niña-sensitive areas are mainly distributed in the central, northwest and northeast regions of China. The sensitivity of vegetation varies across ecosystems: grassland and shrubland had the largest share of El Niño-sensitive areas, and sparse vegetation and savanna were the most sensitive to La Niña events. Overall, the impacts of El Niño events on vegetation in China had regular seasonal variation, while the impacts of La Niña events had regular zonal distribution.  相似文献   

9.
Land surface temperature (LST) is an important factor in global change studies, heat balance and as control for climate change. A comparative study of LST over parts of the Singhbhum Shear Zone in India was undertaken using various emissivity and temperature retrieval algorithms applied on visible and near infrared (VNIR), and thermal infrared (TIR) bands of high resolution Landsat-7 ETM+ imagery. LST results obtained from satellite data of October 26, 2001 and November 2, 2001 through various algorithms were validated with ground measurements collected during satellite overpass. In addition, LST products of MODIS and ASTER were compared with Landsat-7 ETM+ and ground truth data to explore the possibility of using multi-sensor approach in LST monitoring. An image-based dark object subtraction (DOS3) algorithm, which is yet to be tested for LST retrieval, was applied on VNIR bands to obtain atmospheric corrected surface reflectance images. Normalized difference vegetation index (NDVI) was estimated from VNIR reflectance image. Various surface emissivity retrieval algorithms based on NDVI and vegetation proportion were applied to ascertain emissivities of the various land cover categories in the study area in the spectral range of 10.4–12.5 μm. A minimum emissivity value of about 0.95 was observed over the reflective rock body with a maximum of about 0.99 over dense forest. A strong correlation was established between Landsat ETM+ reflectance band 3 and emissivity. Single channel based algorithms were adopted for surface radiance and brightness temperature. Finally, emissivity correction was applied on ‘brightness temperature’ to obtain LST. Estimated LST values obtained from various algorithms were compared with field ground measurements for different land cover categories. LST values obtained after using Valor’s emissivity and single channel equations were best correlated with ground truth temperature. Minimum LST is observed over dense forest as about 26 °C and maximum LST is observed over rock body of about 38 °C. The estimated LST showed that rock bodies, bare soils and built-up areas exhibit higher surface temperatures, while water bodies, agricultural croplands and dense vegetations have lower surface temperatures during the daytime. The accuracy of the estimated LST was within ±2 °C. LST comparison of ASTER and MODIS with Landsat has a maximum difference of 2 °C. Strong correlation was found between LST and spectral radiance of band 6 of Landsat-7 ETM+. Result corroborates the fact that surface temperatures over land use/land cover types are greatly influenced by the amount of vegetation present.  相似文献   

10.
The problem of soil and vegetation recognition with the use of satellite-derived digitized images and sub-satellite spectral brightness measurements at test sites data is discussed. A technique for retrieval of soil humus content is suggested.  相似文献   

11.
The current paper introduces a new multilayer perceptron (MLP) and support vector machine (SVM) based approach to improve daily rainfall estimation from the Meteosat Second Generation (MSG) data. In this study, the precipitation is first detected and classified into convective and stratiform rain by two MLP models, and then four multi-class SVM algorithms were used for daily rainfall estimation. Relevant spectral and textural input features of the developed algorithms were derived from the spectral MSG SEVIRI radiometer channels. The models were trained using radar rainfall data set colected over north Algeria. Validation of the proposed daily rainfall estimation technique was performed by rain gauge network data set recorded over north Algeria. Thus, several statistical scores were calculated, such as correlation coefficient (r), root mean square error (RMSE), mean error (Bias), and mean absolute error (MAE). The findings given by: (r = 0.97, bias = 0.31 mm, RMSE = 2.20 mm and MAE = 1.07 mm), showed a quite satisfactory relationship between the estimation and the respective observed daily precipitation. Moreover, the comparison of the results with those of two advanced techniques based on random forests (RF) and weighted ‘k’ nearest neighbor (WkNN) showed higher accuracy obtained by the proposed model.  相似文献   

12.
GNSS-Reflectometry (GNSS-R) is a remote sensing technique which performs bistatic measurements of the earth surface scattering. This paper presents some theoretical simulations of the specular scattering coefficient of a forested area, with the aim of demonstrating the potentiality of GNSS-R in monitoring forest biomass. The study is performed by means of an electromagnetic model developed in the past years and tested over several vegetation covered sites in its active and passive version. Here, after showing a comparison between model results and measurements over a forest site in the monostatic configuration, and after summarizing other previous validations, the extension to the specular configuration, typical of GNSS-R systems, will be presented. Namely, simulations are carried out at circular polarization and a sensitivity analysis of the received power in the specular configuration to some soil and forest parameters is shown.  相似文献   

13.
Since the 2001 eruption, the volcanic fumes from the Oyama of Miyakejima Island, located approximately 200 km southwest from the mainland of Japan, have affected the vegetation health and biomass of the Tokyo metropolitan area. In this study, we evaluated the potential for measuring/mapping relative forest damage/recovery in forests in the Bosoh Peninsula, Chiba Prefecture, Japan, using LANDSAT Enhanced Thematic Mapper data and ASTER Level-1B data. The simple ratio which is derived from the near-infrared and red reflective response was found to correlate well with ground-based measurements of forest damage caused by continuous SO2 contained in the volcanic fumes. Accumulated data by the synchronized field campaign observation of the Japanese cedar field spectra and by satellite analysis indicates the following interesting features: (1) regional differences of SO2 levels in the forestal area can be estimated by the simple spectrum ratio of the near-infrared and red bands of multispectral satellite data; (2) time-series images using the simple ratios indicated the location of still damaged and recovered forests between the 2001 eruption and 2003; (3) if the vegetations under study are homogeneous single-species with a similar leaf area index and a similar age, the simple ratio was useful to evaluate vegetation damage or recovery among individual forests throughout many of the forests in the Bosoh Peninsula; (4) the damage level of the Tokyo Bay side was found to be consistently higher than the Pacific Ocean side of the peninsula. This obvious difference is likely caused, not only by SO2 from Miyakejima Island, but also by long term and chronic discharged gas from heavy industrial complexes.  相似文献   

14.
A statistical model is proposed for analysis of the texture of land cover types for global and regional land cover classification by using texture features extracted by multiresolution image analysis techniques. It consists of four novel indices representing second-order texture, which are calculated after wavelet decomposition of an image and after texture extraction by a new approach that makes use of a four-pixel texture unit. The model was applied to four satellite images of the Black Sea region, obtained by Terra/MODIS and Aqua/MODIS at different spatial resolution. In single texture classification experiments, we used 15 subimages (50 × 50 pixels) of the selected classes of land covers that are present in the satellite images studied. These subimages were subjected to one-level and two-level decompositions by using orthonormal spline and Gabor-like spline wavelets. The texture indices were calculated and used as feature vectors in the supervised classification system with neural networks. The testing of the model was based on the use of two kinds of widely accepted statistical texture quantities: five texture features determined by the co-occurrence matrix (angular second moment, contrast, correlation, inverse difference moment, entropy), and four statistical texture features determined after the wavelet transformation (mean, standard deviation, energy, entropy). The supervised neural network classification was performed and the discrimination ability of the proposed texture indices was found comparable with that for the sets of five GLCM texture features and four wavelet-based texture features. The results obtained from the neural network classifier showed that the proposed texture model yielded an accuracy of 92.86% on average after orthonormal wavelet decomposition and 100% after Gabor-like wavelet decomposition for texture classification of the examined land cover types on satellite images.  相似文献   

15.
The relationship between canopy cover and spectral characteristics of the corresponding areas was studied in a semi-arid savannah environment in Kordofan, The Sudan.The canopy cover was measured in 32 test plots through air photo interpretation. Achieved values were correlated with multitemporal Landsat MSS raw data and manipulated data.The highest correlation coefficients in general were obtained between crown cover and spectral data recorded during the dry season.The inverse relationship between amount of woody vegetation and nIR reflectance (MSS 6, MSS 7) was striking. This implied that other factors than a healthy foliage characterized the spectral responses.Destructive measurements of woody biomass were carried out to establish a relationship between woody wet weight and crown diameter for future biomass studies.  相似文献   

16.
As a typical semiarid farming-pastoral ecotone sensitive to the environmennt, the Plain of West Liaohe Basin (WLBP) is currently experiencing drastic environmental changes. To identify how environmental change affect vegetation in the WLBP, we analysed spatiotemporal variation characteristics of Ecological environment factors based on monthly and annual air temperature (T), precipitation (P) and Normalized Difference Vegetation Index (NDVI) from 1982 to 2015. And the correlations between them were investigated by correlation analysis (Simple correlation, partial correlation and complex correlation) at temporal and spatial scale. The results showed that: (1) the vegetation growth of the WLBP showed ameliorated trend, with a change rate of 0.004/yr.; (2) P was more sensitive to NDVI than T; (3) and the influence of hydrothermal changes on vegetation growth was more significant than that of the change of single climate factors at time scales; (4) the effects of anthropogenic factors on vegetation change were 75.07% (1982–1993) and 98.08% (1994–2015), respectively. At the temp-special scales, P&T and land use type change (LUCC) were the main climatic and anthropogenic factors that affect vegetation changes, respectively.  相似文献   

17.
Although stand delineation approach based on aerial photographs and field survey produces high accuracy maps, it is labour-intensive and time consuming. Furthermore, conventional forest stand maps may have some uncertainties that can hardly be verified due to the experiments and skills of photo-interpreters. Therefore, researchers have been seeking more objective and cost-effective methods for forest mapping. LiDAR (Light Detection and Ranging) data have a high potential to automatically delineate forest stands. Unlike optical sensors, LiDAR height data provides information about both the horizontal and vertical structural characteristics of forest stands. However, it deprives of spectral data that may be successfully used in separating tree species. In this study, we investigate the potential of LiDAR – WorldView-3 data synergy for the automatic generation of a detailed forest stand map which can be used for a tactical forest management plan. Firstly, image segmentation was applied to LiDAR data alone and LiDAR/WorldView-3 data set in order to obtain the most suitable image objects representing forest stands. Visual inspection of the segmentation results showed that image objects based on the LiDAR/WorldView-3 data set were more compatible with the reference forest stand boundaries. After the segmentation process, the LiDAR and LiDAR/WorldView-3 data sets were independently classified using object-based classification method. We tested two levels of classification. The first was a detailed classification with 14 classes considering reference stand types. The second was the rough classification with 9 classes where some stand types were combined. The mean, standard deviation and texture features of LiDAR metrics and spectral information were used in the classification. The accuracy assessment results of LiDAR data showed that the Overall Accuracy (OA) was calculated as 0.31 and 0.43, and the Kappa Index (KIA) was calculated as 0.26 and 0.32 for the detailed and rough classifications, respectively. For the LiDAR/WorldView-3 data set, the OA values were calculated as 0.50 and 0.61, and the KIA were calculated as 0.46 and 0.55 for the detailed and rough classifications, respectively. These results showed that the forest stand map derived from the LiDAR/WorldView-3 data synergy is more compatible with the reference forest stand map. In conclusion, it can be said that the forest stand maps produced in this study may provide strategic forest planning needs, but it is not sufficient for tactical forest management plans.  相似文献   

18.
This paper proposes a particular approach to assess information about soil degradation, based on a methodology to calculate soil color from NOAA/AVHRR data. As erosive processes change physical and chemical properties of the soil, altering, consequently, the superficial color, monitoring the change in color over time can help to identify and analyze those processes. A relationship among the soil color (described in the Munsell Color System, i.e., in terms of Hue, Value and Chroma), vegetation indices, surface temperature and emissivity has been established, which is based on the theoretical model. The methodology has three main phases: determination of the regression models among soil color and vegetation indices, emissivity and surface temperature; generation of digital soil color models; and statistical evaluation of the estimated color. The tests showed that the methodology is efficient in determining soil color using the various vegetation indices (i.e., Normalized vegetation index NDVI, Modified soil adjusted vegetation index MSAVI). One vegetation index, i.e., Purified adjusted vegetation index (PAVI) is proposed to subsidies the effect of vegetation over the soil. Best results were obtained for the Hue color component. To further test the methodology, the estimated digital color models were compared with the characteristic color of soil classes in the test area. The results of this application confirmed the methodology’s capacity to determine the soil color from NOAA/AVHRR data. This type of study is quite helpful to know the erosion of soil as well as some abrupt change in soil due to natural hazards by space borne or air-borne sensors.  相似文献   

19.
A hand-held radiometer was used to gather spectral radiance data simulating bands 3, 4 and 5 of the Landsat-D Thematic Mapper. Variations in biomass of the salt marsh plant Spartina alterniflora were highly correlated to changes in spectral radiance expressed as the vegetation index or the infrared index. Negative stresses like increased soil salinity and increased concentrations of copper or zinc yielded reductions in biomass which were detected spectrally. Positive stresses like freshwater and sewage effluent additions produced an increase in biomass which also were detected using spectral data. The demonstrated detection of biomass from spectral data was expanded spatially and temporally to estimate net primary productivity of a salt marsh. Remote sensing estimates of production ranged from 5 to 20% of estimates from harvest data. Future applications of this biomass estimation technique, employing data gathered from satellite platforms and from the ground, are discussed for salt marsh systems.  相似文献   

20.
Color composite TM film products which include TM5, TM4, and a visible band (TM1, TM2, or TM3) are superior to composites which exclude TM4 for discriminating most forest and agricultural cover types and estimating area proportions for inventory and sampling purposes. Clustering a subset of TM data results in a spectral class map which groups diverse forest cover types into spectrally and ecologically similar areas suitable for use as a stratification base in traditional forest inventory practices. Analysis of simulated Thematic Mapper data indicate that the location and number of TM spectral bands are suitable for detecting differences in major soil properties and characterizing soil spectral curve form and magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号