首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Shea  M.A.  Smart  D.F. 《Space Science Reviews》2000,93(1-2):187-205
There appears to be concern among some people about the possible effects of cosmic radiation on everyday life. The amount of cosmic radiation that reaches the Earth and its environment is a function of solar cycle, altitude and latitude. The possible effect of naturally occurring cosmic radiation on airplane crews and space flight personal is a subject of current study. This paper discusses the variables controlling the cosmic ray flux in the atmosphere and describes models and software that have been developed that provide quantitative information about the cosmic radiation exposure at flight altitudes. The discussion is extended to include the cosmic radiation exposure to manned spacecraft. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
In spite of the availability of satellites, the possiblity of increasing basic knowledge of cosmic radiation with the help of balloons has not diminished. New detection techniques have made it possible to enter new areas of study which had been closed earlier.  相似文献   

3.
Kirkby  Jasper  Laaksonen  Ari 《Space Science Reviews》2000,94(1-2):397-409
Satellite observations have recently revealed a surprising imprint of the 11-year solar cycle on global low cloud cover. The cloud data suggest a correlation with the intensity of galactic cosmic rays. If this apparent connection between cosmic rays and clouds is real, variations of the cosmic ray flux caused by long-term changes in the solar wind could have a significant influence on the global energy radiation budget and the climate. However a direct link between cosmic rays and clouds has not been unambiguously established and, moreover, the microphysical mechanism is poorly understood. New experiments are being planned to find out whether cosmic rays can affect cloud formation, and if so how.  相似文献   

4.
The isotopic abundances of the Galactic cosmic radiation measured in the Heliosphere provide unique information on acceleration, propagation modes and containment times in the Galactic magnetic fields. Nuclear interactions with interstellar matter lead to observable γ-radiation production and, thus, to direct information on cosmic ray distribution throughout the Galaxy and its magnetic halo. The COSPIN High Energy Telescope (HET) has excellent isotopic resolution from hydrogen to nickel over the ten year period of Ulysses in space. Based on our recent work, we discuss the implications for modeling the acceleration and propagation of the cosmic radiation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
Solar proton events can adversely affect space and ground-based systems. Ground-level events are a subset of solar proton events that have a harder spectrum than average solar proton events and are detectable on Earth’s surface by cosmic radiation ionization chambers, muon detectors, and neutron monitors. This paper summarizes the space weather effects associated with ground-level solar proton events during the 23rd solar cycle. These effects include communication and navigation systems, spacecraft electronics and operations, space power systems, manned space missions, and commercial aircraft operations. The major effect of ground-level events that affect manned spacecraft operations is increased radiation exposure. The primary effect on commercial aircraft operations is the loss of high frequency communication and, at extreme polar latitudes, an increase in the radiation exposure above that experienced from the background galactic cosmic radiation. Calculations of the maximum potential aircraft polar route exposure for each ground-level event of the 23rd solar cycle are presented. The space weather effects in October and November 2003 are highlighted together with on-going efforts to utilize cosmic ray neutron monitors to predict high energy solar proton events, thus providing an alert so that system operators can possibly make adjustments to vulnerable spacecraft operations and polar aircraft routes.  相似文献   

6.
In this paper I review the motivation and current status of modeling of plasmas exposed to strong radiation fields, as it applies to the study of cosmic X-ray sources. This includes some of the astrophysical issues which can be addressed, the ingredients for the models, the current computational tools, the limitations imposed by currently available atomic data, and the validity of some of the standard assumptions. I will also discuss ideas for the future: challenges associated with future missions, opportunities presented by improved computers, and goals for atomic data collection.  相似文献   

7.
Cosmic Rays,Clouds, and Climate   总被引:5,自引:0,他引:5  
Marsh  Nigel  Svensmark  Henrik 《Space Science Reviews》2000,94(1-2):215-230
A correlation between a global average of low cloud cover and the flux of cosmic rays incident in the atmosphere has been observed during the last solar cycle. The ionising potential of Earth bound cosmic rays are modulated by the state of the heliosphere, while clouds play an important role in the Earth's radiation budget through trapping outgoing radiation and reflecting incoming radiation. If a physical link between these two features can be established, it would provide a mechanism linking solar activity and Earth's climate. Recent satellite observations have further revealed a correlation between cosmic ray flux and low cloud top temperature. The temperature of a cloud depends on the radiation properties determined by its droplet distribution. Low clouds are warm (>273K) and therefore consist of liquid water droplets. At typical atmospheric supersaturations (1%) a liquid cloud drop will only form in the presence of an aerosol, which acts as a condensation site. The droplet distribution of a cloud will then depend on the number of aerosols activated as cloud condensation nuclei (CCN) and the level of super saturation. Based on observational evidence it is argued that a mechanism to explain the cosmic ray-cloud link might be found through the role of atmospheric ionisation in aerosol production and/or growth. Observations of local aerosol increases in low cloud due to ship exhaust indicate that a small perturbation in atmospheric aerosol can have a major impact on low cloud radiative properties. Thus, a moderate influence on atmospheric aerosol distributions from cosmic ray ionisation would have a strong influence on the Earth's radiation budget. Historical evidence over the past 1000 years indicates that changes in climate have occurred in accord with variability in cosmic ray intensities. Such changes are in agreement with the sign of cloud radiative forcing associated with cosmic ray variability as estimated from satellite observations.  相似文献   

8.
There are a number of radioactive clocks in the cosmic radiation that can be used to measure the time scales for cosmic ray processes in the Galaxy. With high-resolution isotope measurements available from ACE it is now possible to read these clocks with greatly improved accuracy and address key questions about the origin and lifetime of cosmic rays. This paper discusses the status of three such investigations.  相似文献   

9.
Cosmic Rays in Relation to Space Weather   总被引:5,自引:0,他引:5  
A review of selected experimental results relevant for the use of cosmic ray records in Space Weather research is presented. Interplanetary perturbations, initiated in the solar atmosphere, affect galactic cosmic rays. In some cases their influence on the cosmic ray intensity results in data signatures that can possibly be used to predict geomagnetic storm onsets. Case studies illustrating the complexity of the cosmic ray effects and related geomagnetic activity precursors are discussed. It is shown that some indices for cosmic ray activity are good tools for testing the reliability of cosmic ray characteristics for Space Weather forecasts. A brief summary of the influence of cosmic rays on the ozone layer is also given. The use of cosmic ray data for Space Weather purposes is still in its infant stage, but suggestions for both case and statistical studies are made. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
The first observations of solar cosmic rays were made simultaneously by many investigators at worldwide cosmic-ray stations in the periods of powerful chromospheric flares on February 28 and March 7, 1942. The discovery of these and the investigation of cosmic-ray solar-daily variations with maximum time near noon led some authors (Richtmyer and Teller, 1948; Alfvén, 1949, 1950) to a model of apparent cosmic-ray solar origin. We present here the results of the properties of solar cosmic rays from ground events (experimental and theoretical investigations). We also discuss important information from solar experimental data relating to these ground events observed in September and October 1989 and May 1990. Some experimental evidence of acceleration processes in associated phenomena with flares and long-term (solar cycle) variation of the average flux of solar cosmic rays is discussed as also cornal and interplanetary propagation, and that in the terrestrial magnetosphere. Note that the energy spectrum of solar cosmic rays varied very strongly from one flare to another. What are the causes of these phenomena? What is the nature of chemical and isotopic contents of solar cosmic rays? How can its changes occur in the energy spectrum and chemical contents of solar cosmic rays in the process of propagation? Is it possible to recalculate these parameters to the source? What makes solar cosmic rays rich in heavy nucleus and3He? The important data about electrons, positrons, gamma-quanta and neutrons from flares will be discussed in a subsequent paper (Dorman and Venkatesan, 1992). The question is: What main acceleration mechanism of solar flare and associated phenomena are reliable? These problems are connected with the more general problem on solar flare origin and its energetics. In Dorman and Venkatesan (1993) we will consider these problems as well as the problem of prediction of radiation hazard from solar cosmic rays (not only in space, but also in the Earth's atmosphere too).  相似文献   

11.
12.
Marsh  Nigel  Svensmark  Henrik 《Space Science Reviews》2003,107(1-2):317-325
An increasing number of studies indicate that variations in solar activity have had a significant influence on Earth's climate. However, the mechanisms responsible for a solar influence are still not known. One possibility is that atmospheric transparency is influenced by changing cloud properties via cosmic ray ionisation (the latter being modulated by solar activity). Support for this idea is found from satellite observations of cloud cover. Such data have revealed a striking correlation between the intensity of galactic cosmic rays (GCR) and low liquid clouds (<3.2 km). GCR are responsible for nearly all ionisation in the atmosphere below 35 km. One mechanism could involve ion-induced formation of aerosol particles (diameter range, 0.001–1.0 μm) that can act as cloud condensation nuclei (CCN). A systematic variation in the properties of CCN will affect the cloud droplet distribution and thereby influence the radiative properties of clouds. If the GCR-Cloud link is confirmed variations in galactic cosmic ray flux, caused by changes in solar activity and the space environment, could influence Earth's radiation budget. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
We briefly review sources of cosmic rays, their composition and spectra as well as their propagation in the galactic and extragalactic magnetic fields, both regular and fluctuating. A special attention is paid to the recent results of the X-ray and gamma-ray observations that shed light on the origin of the galactic cosmic rays and the challenging results of Pierre Auger Observatory on the ultra high energy cosmic rays. The perspectives of both high energy astrophysics and cosmic-ray astronomy to identify the sources of ultra high energy cosmic rays, the mechanisms of particle acceleration, to measure the intergalactic radiation fields and to reveal the structure of magnetic fields of very different scales are outlined.  相似文献   

14.
Belov  Anatoly 《Space Science Reviews》2000,93(1-2):79-105
The current knowledge and ideas, obtained from groundlevel observations and concerning the solar modulation of cosmic rays, are reviewed. The following topics are discussed: observations of the cosmic ray modulation at the Earth and main characteristics of the accumulated experimental data; manifestations of the solar magnetic cycle in cosmic rays; the effect of hysteresis and its relation to the size of the heliosphere; the rigidity spectrum of long-term cosmic ray variations; the influence of the sporadic effects on long-term modulation; long-term variations of cosmic ray anisotropy and gradients; the place of groundlevel observations in current studies of cosmic ray modulation and their future prospects. Particular consideration is given to the correlation of long-term cosmic ray variations with different solar-heliospheric parameters, and to empirical models of cosmic ray modulation. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Pyle  Roger 《Space Science Reviews》2000,93(1-2):381-400
Over the last few years, great strides have been made in providing access to data, both archival and near-real-time, for researchers throughout the field of Space Science. Neutron monitor data, in particular, has for many decades enjoyed a unique history of world-wide collaborative efforts and the unrestricted sharing of datasets among researchers. This is in large part due to the nature of the measurements made by neutron monitors; an understanding of the time-varying, anisotropic galactic or solar cosmic ray spectrum in most cases requires that data from a large array of stations needs to be considered, and often that array must be global in scope. This paper will attempt to summarize the current availability of neutron monitor data, by (a) describing the current status of archival data and near-real-time data access to neutron monitor data, and (b) looking into the future, with an emphasis on the use of the World Wide Web and other electronic means as the source mechanism. Public outreach efforts using active neutron monitors will also be discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
This report is a brief introduction to some of the vital contributions that the Advanced Composition Explorer Mission will make towards our understanding of the origins of matter and acceleration of particles on a wide range of solar and astrophysical scales. Examples of these contributions are drawn from two broad areas of the space sciences. They are: (1) Dynamical phenomena at the Sun and in the inner heliosphere; and (2) The elemental and isotopic composition of matter in the solar wind, solar accelerated ejecta, galactic cosmic radiation and the anomalous nuclear component in the heliosphere. Some current problems with theories intended to account for these phenomena are discussed, including interpretations of the stable and radioactive isotopes in the galactic cosmic rays. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Recent examinations of extraterrestrial materials exposed to cosmic rays for different intervals of time during the geological history of the solar system have generated a wealth of new information on the history of cosmic radiation. This information relates to the temporal variations in
  1. the flux and energy spectrum of low energy (solar) protons of ? 10 MeV kinetic energy;
  2. the flux and energy spectrum of (solar) heavy nuclei of Z > 20 of kinetic energy, 0.5–10 MeV/n;
  3. the integrated flux of protons and heavier nuclei of ? 0.5 GeV kinetic energy, and
  4. the flux and energy spectrum of nuclei of Z > 20 of medium energy — 100–2000 MeV/n kinetic energy.
The above studies are entirely based on the natural detector method which utilises two principal cosmogenic effects observed in rocks, (i) isotopic changes and (ii) changes in the crystalline structure of rock constituents, due to cosmogenic interactions. The information available to date in the field of hard rock cosmic ray archaeology refers to meteorites and lunar rocks/soil. Additional information based on study of cosmogenic effects in man-made materials exposed to cosmic radiation in space is also discussed. It is shown that the natural detectors inspite of their extreme simplicity have begun to provide cosmic ray information in a very quantitative and precise manner comparable to the most sophisticated electronic particle detectors. The single handicap in using the hard rock detectors is however the uncertainty regarding their manner of exposure, geometry etc. At present, a variety of techniques are being used to study the evolutionary history of extraterrestrial materials and as this field grows, uncertainties in cosmic ray archaeology will correspondingly decrease.  相似文献   

18.
The potential risks for late effects including cancer, cataracts, and neurological disorders due to exposures to the galactic cosmic rays (GCR) is a large concern for the human exploration of Mars. Physical models are needed to project the radiation exposures to be received by astronauts in transit to Mars and on the Mars surface, including the understanding of the modification of the GCR by the Martian atmosphere and identifying shielding optimization approaches. The Mars Global Surveyor (MGS) mission has been collecting Martian surface topographical data with the Mars Orbiter Laser Altimeter (MOLA). Here we present calculations of radiation climate maps of the surface of Mars using the MOLA data, the radiation transport model HZETRN (high charge and high energy transport), and the quantum multiple scattering fragmentation model, QMSFRG. Organ doses and the average number of particle hits per cell nucleus from GCR components (protons, heavy ions, and neutrons) are evaluated as a function of the altitude on the Martian surface. Approaches to improve the accuracy of the radiation climate map, presented here using data from the 2001 Mars Odyssey mission, are discussed.  相似文献   

19.
Jokipii  J.R.  Giacalone  J. 《Space Science Reviews》1998,83(1-2):123-136
Anomalous cosmic rays are a heliospheric phenomenon in which interstellar neutral atoms stream into the heliosphere, are ionized by either solar radiation or the solar wind, and are subsequently accelerated to very high energies, greater than 1 GeV. Current thinking has the bulk of the acceleration to very-high energies taking place, by the mechanism of diffusive shock acceleration, at the termination shock of the solar wind. Detailed two-dimensional numerical simulations and models based on this picture show broad agreement with a number of the observed properties of anomalous cosmic rays. Recent improvements to this picture include the observation of multiply charged cosmic rays and the suggestion that some "preacceleration" of the initially ionized particles occurs in the inner heliosphere.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号